早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2009•杭州)如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a

题目详情
(2009•杭州)如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).
(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;
(2)求正六边形T1,T2的面积比S1:S2的值.

▼优质解答
答案和解析
(1)根据圆内接正六边形的半径等于它的边长,则r:a=1:1;在由圆的半径和正六边形的半边以及正六边形的半径组成的直角三角形中,根据锐角三角函数即可求得其比值;
(2)根据相似多边形的面积比是相似比的平方.由(1)可以求得其相似比,再进一步求得其面积比.
【解析】
(1)连接圆心O和T1的6个顶点可得6个全等的正三角形.
所以r:a=1:1;
连接圆心O和T2相邻的两个顶点,得以圆O半径为高的正三角形,
所以r:b=AO:BO=sin60°=:2;
(2)T1:T2的边长比是:2,所以S1:S2=(a:b)2=3:4.
看了 (2009•杭州)如图,有一...的网友还看了以下: