早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在平行六面体ABCD-A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=π3.(Ⅰ)求证:顶点A1在底面ABCD的射影O在∠BAD的平分线上;(Ⅱ)求这个平行六面体的体积.

题目详情
如图,在平行六面体ABCD-A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=
π
3

(Ⅰ)求证:顶点A1在底面ABCD的射影O在∠BAD的平分线上;
(Ⅱ)求这个平行六面体的体积.
▼优质解答
答案和解析
(Ⅰ)证:连接A1O,则A1O⊥底面ABCD.
作OM⊥AB交AB于M,作ON⊥AD交AD于N,连接A1M,A1N
由三垂线定理得A1M⊥AB,A1N⊥AD∵∠A1AM=∠A1AN,
∴Rt△A1NA≌Rt△A1MA∴A1M=A1N∴OM=ON.
∴点O在∠BAD的平分线上
(Ⅱ)∵AM=AA1cos
π
3
=3•
1
2
3
2

∴AO=AMcsc
π
4
3
2
2

又在职Rt△AOA1中,A1O2=AA12-AO2=9−
9
2
9
2

∴A1O=
3
2
2

∴平行六面体的体积V=5•4•
3
2
2
=30
2