早教吧作业答案频道 -->数学-->
设f(x),g(x)是实系数多项式,且(x^2+2)f(x)-(x^3+1)g(x)=1.若f(x)是首项系数为1的3次多项式,求g(x).
题目详情
设f(x),g(x)是实系数多项式,且(x^2+2)f(x)-(x^3+1)g(x)=1.若f(x)是首项系数为1的3次多项式,求g(x).
▼优质解答
答案和解析
因为f(x)是首项系数为1的3次多项式(x^2+2)f(x)-(x^3+1)g(x)=1;(x^2+2)f(x)的最高次为5次
所以(x^3+1)g(x)的最高次也为五次,所以g(x)最高次为2次.
设f(x)=x^3+ax^2+bx+c;g(x)=dx^2+ex+f
将f(x)、g(x)带入(x^2+2)f(x)-(x^3+1)g(x)=1展开
可得(1-d)x^5+(a-e)x^4+(b+2-f)x^3+(c+2a-d)x^2+(2b-e)x+(2c-f)=1
1-d=0
a-e=0
b+2-f=0
c+2a-d=0
2b-e=0
2c-f=1
剩下的你应该会做了,这种题都可以这样做
所以(x^3+1)g(x)的最高次也为五次,所以g(x)最高次为2次.
设f(x)=x^3+ax^2+bx+c;g(x)=dx^2+ex+f
将f(x)、g(x)带入(x^2+2)f(x)-(x^3+1)g(x)=1展开
可得(1-d)x^5+(a-e)x^4+(b+2-f)x^3+(c+2a-d)x^2+(2b-e)x+(2c-f)=1
1-d=0
a-e=0
b+2-f=0
c+2a-d=0
2b-e=0
2c-f=1
剩下的你应该会做了,这种题都可以这样做
看了 设f(x),g(x)是实系数...的网友还看了以下:
函数的对称性和周期性的题目、已知函数y=f(x)1)若函数g(x)的图像与函数f(x)关于直线x= 2020-06-04 …
关于对乘积的积分的理解和转化既然有乘积后微分的公式(f*g)'=f'*g+f*g'由此,对乘积的微 2020-06-10 …
高数求导问题设f(x)和g(x)是在R上定义的函数,且具有如下性质:(1)f(x+y)=f(x)g 2020-06-18 …
设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是().设函数f(x)和g( 2020-07-08 …
若f(x),g(x)的定义域都是R,且x-f(g(x)=0有实数解,则g(f(x))不可能是()A 2020-07-31 …
幂指对函数的题目,已知f(x)是幂函数,g(x)是指数函数,F(x)=f(x)+g(x)……已知f 2020-08-01 …
谁能给解释下复合函数连续性的问题?f(x)在x=x0处连续.g(x)在这点不连续.请问f(x)+g 2020-08-02 …
复合函数导数公式的疑问复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)即y=f(g 2020-08-02 …
已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).(1)求函数已知 2020-12-08 …
设f(x),g(x),h(x)是R上的任意实数函数,如下定义两个函数和(f·g)(x);对任意x∈R 2020-12-22 …