早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在平面直角坐标系xOy中,点A,B在双曲线y=kx(k是常数,且k≠0)上,过点A作AD⊥x轴于点D,过点B作BC⊥y轴于点C,已知点A的坐标为(4,32),四

题目详情
如图,在平面直角坐标系xOy中,点A,B在双曲线y=
k
x
(k是常数,且k≠0)上,过点A作AD⊥x轴于点D,过点B作BC⊥y轴于点C,已知点A的坐标为(4,
3
2
),四边形ABCD的面积为4,则点B的坐标为___.
作业帮
▼优质解答
答案和解析
作业帮 连接BO、BD,
∵点A在双曲线y=
k
x
(k是常数,且k≠0)上,点A的坐标为(4,
3
2
),
∴k=4×
3
2
=6,
又∵BC⊥y轴于点C,
∴BC∥OD,
∴△BOC的面积=△BCD的面积=3,
又∵四边形ABCD的面积为4,
∴△ABD的面积=4-3=1,
设B(a,
6
a
),
∵AD⊥x轴于点D,A的坐标为(4,
3
2
),
∴AD=
3
2

1
2
×
3
2
×(4-a)=1,
解得a=
8
3

6
a
=
9
4

∴点B的坐标为(
8
3
9
4
).
故答案为:(
8
3
9
4
).