早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图:在直角坐标系中,已知B(b,0),C(0,c),且|b+3|+(2c-8)2=0.(1)求B、C的坐标;(2)点A、D是第二象限内的点,点M、N分别是x轴和y轴负半轴上的点,∠ABM=∠CBO,CD∥AB,MC、NB所

题目详情
如图:在直角坐标系中,已知B(b,0),C(0,c),且|b+3|+(2c-8)2=0.
(1)求B、C的坐标;
(2)点A、D是第二象限内的点,点M、N分别是x轴和y轴负半轴上的点,∠ABM=∠CBO,CD∥AB,MC、NB所在直线分别交AB、CD于E、F,若∠MEA=70°,∠CFB=30°.求∠CMB-∠CNB的值;
(3)如图:AB∥CD,Q是CD上一动点,CP平分∠DCB,BQ与CP交于点P,给出下列两个结论:①
∠DQB+QBC
∠QPC
的值不变;②
∠DQB+∠QBC
∠QPC
的值改变.其中有且只有一个是正确的,请你找出这个正确的结论并求其定值.
▼优质解答
答案和解析
(1)由题意得:b+3=2c-8=0,(1分)
∴b=-3,c=4.(2分)
∴B(-3,0),C(0,4).(3分)

(2)∵CD∥AB,
∴∠DCB+∠ABC=180°.
∵∠COB=90°,
∴∠CBO+∠BCO=90°.(4分)
∵(∠GCF+∠DCB+∠BCO)+(∠CBO+∠ABC+∠ABM)
=180°+180°=360°,
∴∠ABM+∠GCF=360°-180°-90°=90°.(5分)
又∵∠CMB=∠MEA-∠ABM=70°-∠ABM
∠CNB=∠GCF-∠CFB=∠GCF-30°(6分)
∴∠CMB-∠CNB=(70°-∠ABM)-(∠GCF-30°)
=100°-(∠ABM+∠GCF)
=100°-90°
=10°.

(3)答:①
∠DQB+∠QBC
∠QPC
的值不变,定值为2.
∵CP平分∠DCB,
∴∠QCB=2∠PCB.
又∵∠DQB=∠QBC+∠QCB,
∴∠DQB+∠QBC
=(∠QBC+∠QCB)+∠QBC
=2∠QBC+2∠PCB
=2(∠QBC+∠PCB)
=2∠QPC
∴②
∠DQB+∠QBC
∠QPC
=
2∠QPC
∠QPC
=2.(12分)