早教吧作业答案频道 -->其他-->
已知数列{an}的前n项和为Sn,且对于任意的n∈N*,恒有Sn=2an-n,设bn=log2(an+1).(1)求证:数列{an+1}是等比数列;(2)求数列{an},{bn}的通项公式an和bn;(3)若cn=2bnan•an+1,证明:c1+c2+…
题目详情
已知数列{an}的前n项和为Sn,且对于任意的n∈N*,恒有Sn=2an-n,设bn=log2(an+1).
(1)求证:数列{an+1}是等比数列;
(2)求数列{an},{bn}的通项公式an和bn;
(3)若cn=
,证明:c1+c2+…+cn<
.
(1)求证:数列{an+1}是等比数列;
(2)求数列{an},{bn}的通项公式an和bn;
(3)若cn=
2bn |
an•an+1 |
4 |
3 |
▼优质解答
答案和解析
(1)当n=1时,S1=2a1-1得a1=1,
当n≥2时,Sn=2an-n,Sn-1=2an-1-(n-1),
两式相减得:an=2an-2an-1-1,
∴an=2an-1+1,
∴an+1=2(an-1+1)
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.
(2)由(1)得an+1=2•2n−1=2n,
∴an=2n−1,n∈N*
∴bn=log2(an+1)=log22n=n,n∈N*.
(3)证法一:cn=
,cn+1=
由{an}为正项数列,所以{cn}也为正项数列,
从而
=
=
<
=
,
∴数列{cn}递减.
c1+c2+…+cn<c1+
c1+(
)2c1+…+(
)n−1c1=
•c1<
.
证法二:由cn=
当n≥2时,Sn=2an-n,Sn-1=2an-1-(n-1),
两式相减得:an=2an-2an-1-1,
∴an=2an-1+1,
∴an+1=2(an-1+1)
∴{an+1}是以a1+1=2为首项,2为公比的等比数列.
(2)由(1)得an+1=2•2n−1=2n,
∴an=2n−1,n∈N*
∴bn=log2(an+1)=log22n=n,n∈N*.
(3)证法一:cn=
2n |
anan+1 |
2n+1 |
an+1an+2 |
由{an}为正项数列,所以{cn}也为正项数列,
从而
cn+1 |
cn |
2an |
an+2 |
2(2n−1) |
2n+2−1 |
2(2n−1) |
2n+2−4 |
1 |
2 |
∴数列{cn}递减.
c1+c2+…+cn<c1+
1 |
2 |
1 |
2 |
1 |
2 |
1−(
| ||
1−
|
4 |
3 |
证法二:由cn=
2n | ||||||||||||
(2
作业帮用户
2017-09-17
举报
|
看了 已知数列{an}的前n项和为...的网友还看了以下:
已知m>0,n>0,且满足m+n=4,则下列不等式恒成立的是A.1/m+1/n≤1B.1/MN≥1 2020-06-03 …
不等式与极值问题:若a>b>c,n∈N*,且若a>b>c,n∈N*,且(a-b)分之一+(b-c) 2020-06-07 …
在数列{an}中,已知a1=1,an=an-1+an-2+…+a2+a1(n∈N*,n≥2).(1 2020-07-09 …
若n此多项式f(x)=C0+C1x+C2x^2+…+Cnx^n对n+1个不同的x值都是零,则此多项 2020-07-09 …
已知正项数列{an}中a1=2an^-an*a(n-1)-2n*a(n-1)-4n^2=0(n>= 2020-07-16 …
是否存在实数a,使不等式1/(n+1)+1/(n+2)+1/(n+3)……1/(2n)>(1/12 2020-07-30 …
又见高一函数(抽象函数)……题目请入内函数f(x)对任意m,n∈R,都有f(m+n)=f(m)+f 2020-08-01 …
基础数列问题3已知数列{an}中,a1=1且对任意n属于N*,an+1-an=11求其通项公式2若 2020-08-01 …
已知{an}是正项无穷数列,满足1/(an*a(n+1))+1/(a(n+1)*a(n+2))+1 2020-08-02 …
数列{Xn}满足X1=3/2,Xn+1={3Xn,n为奇数,Xn+n,n为偶数.(1)求数列Xn的通 2020-11-06 …