早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设实数x,y,z满足0<x<y<z<π2,证明:π2+2sinxcosy+2sinycosz>sin2x+sin2y+sin2z.

题目详情
设实数x,y,z满足0<x<y<z<
π
2
,证明:
π
2
+2sinxcosy+2sinycosz>sin2x+sin2y+sin2z.
▼优质解答
答案和解析
证明:由于sin2x+sin2y+sin2z-2sinxcosy-2sinycosz
=
1
2
[(sin2x+sin2y)+(sin2y+sin2z)+(sin2z+sin2x)]-2sinxcosy-2sinycosz
≤sin(x+y)cos(x-y)+sin(y+z)cos(y-z)+sin(z+x)cos(z-x)-2sinxcosycos(x-y)-2sinycoszcos(y-z)
=sin(y-x)cos(x-y)+sin(z-y)cos(y-z)+sin(z+x)cos(z-x)
=
1
2
sin(2y-2x)+
1
2
sin(2z-2y)+sin(z+x)cos(z-x)
=sin(z-x)cos(2y-x-z)+sin(z+x)cos(z-x)
≤sin(z-x)+cos(z-x)≤
2
<
π
2

π
2
+2sinxcosy+2sinycosz>sin2x+sin2y+sin2z.