早教吧作业答案频道 -->数学-->
设实数x,y,z满足0<x<y<z<π2,证明:π2+2sinxcosy+2sinycosz>sin2x+sin2y+sin2z.
题目详情
设实数x,y,z满足0<x<y<z<
,证明:
+2sinxcosy+2sinycosz>sin2x+sin2y+sin2z.
π |
2 |
π |
2 |
▼优质解答
答案和解析
证明:由于sin2x+sin2y+sin2z-2sinxcosy-2sinycosz
=
[(sin2x+sin2y)+(sin2y+sin2z)+(sin2z+sin2x)]-2sinxcosy-2sinycosz
≤sin(x+y)cos(x-y)+sin(y+z)cos(y-z)+sin(z+x)cos(z-x)-2sinxcosycos(x-y)-2sinycoszcos(y-z)
=sin(y-x)cos(x-y)+sin(z-y)cos(y-z)+sin(z+x)cos(z-x)
=
sin(2y-2x)+
sin(2z-2y)+sin(z+x)cos(z-x)
=sin(z-x)cos(2y-x-z)+sin(z+x)cos(z-x)
≤sin(z-x)+cos(z-x)≤
<
故
+2sinxcosy+2sinycosz>sin2x+sin2y+sin2z.
=
1 |
2 |
≤sin(x+y)cos(x-y)+sin(y+z)cos(y-z)+sin(z+x)cos(z-x)-2sinxcosycos(x-y)-2sinycoszcos(y-z)
=sin(y-x)cos(x-y)+sin(z-y)cos(y-z)+sin(z+x)cos(z-x)
=
1 |
2 |
1 |
2 |
=sin(z-x)cos(2y-x-z)+sin(z+x)cos(z-x)
≤sin(z-x)+cos(z-x)≤
2 |
π |
2 |
故
π |
2 |
看了设实数x,y,z满足0<x<y...的网友还看了以下:
1.已知x+y=-1,y+z=5,z+x=4,则x+y+z=等于( )A 1 B 2 C 3 D 2020-05-16 …
一个mathematica程序添加作图语句Clear[x,y,n,h,S1,S2,S3,S4,i] 2020-05-16 …
若x,y,z为正整数,且满足不等式x/3>=z>=y/2,y+z>=1997,则x的最小值问:以下 2020-05-20 …
实数x,y满足(更号下x²+1997-x)(根号下y²+1997-y)=1997,求x+y的值.( 2020-05-21 …
请问这个英语连读问题怎么解决Ialsoneedtheotherone.[I(y)alsoneedt 2020-07-07 …
已知(2x-1)+i=y(3-y)i,x为纯虚数,y属于R求x,y 2020-08-01 …
已知复数z=icos140°,则argz=若x是纯虚数,y是实数,且(2x-1)i=y-(3-y) 2020-08-01 …
若直线y=12x+2分别交x轴、y轴于A、C两点,点P是该直线上在第一象限内的一点,PB⊥x轴,B 2020-08-01 …
有关复数的题目一.求适合下列方程的x与y(x,y全属于R)的值:1)(1+2i)x+(3-10i) 2020-08-02 …
估算范围:I=∫∫xy(x+y+1)dσ,其中D={(x,y)/0≦x≦1,0≦y≦2}.I=∫∫( 2020-10-31 …