早教吧作业答案频道 -->数学-->
已知k∈R,函数f(x)=lnx-kx.(Ⅰ)若k>0,求函数f(x)的单调区间;(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
题目详情
已知k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
▼优质解答
答案和解析
(Ⅰ)f′(x)=
(x>0)在(0,
)上f'(x)>0,f(x)单调递增,在(
,+∞)上f'(x)<0,f(x)单调递减;
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
⇔
>
⇔
>
令
=t,则t>1,
>
⇔lnt>
令g(t)=lnt-
(t>1)
g'(t)=
>0,所以g(t)在(1,+∞)上单调递增,
故g(t)>g(1)=0,即lnt>
成立,∴x1x2>e2成立.
1-kx |
x |
1 |
k |
1 |
k |
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
2 |
x1+x2 |
lnx1-lnx2 |
x1-x2 |
2 |
x1-x2 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
令
x2 |
x1 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
2(t-1) |
t+1 |
令g(t)=lnt-
2(t-1) |
t+1 |
g'(t)=
(t-1)2 |
t(t+1)2 |
故g(t)>g(1)=0,即lnt>
2(t-1) |
t+1 |
看了已知k∈R,函数f(x)=ln...的网友还看了以下:
已知函数f(x)=x^2+a(x+lnx),x>0,a∈r.(1)f(x)的图像在(1,f(1)) 2020-05-13 …
f(x)=f(lnx)/x的导数怎么推算得出?书上的答案是f'(lnx)/x*x-f(lnx)/x 2020-05-14 …
设f(x)=x^n•sin(1/x)(x≠0),且f(0)=0,则f(x)在x=0处()设f(x) 2020-05-20 …
f(x)=e^x(x小于或等于0),f(x)也等于lnx,x>0,求f(f(0.5)) 2020-06-06 …
f(lnx)^2-2xf(lnx)x^2lnx=0,f(0)=0,则f(x) 2020-06-12 …
设f(x)满足关系式f^2(lnx)-2xf(lnx)+x^2lnx=0且f(0)=0求f(x) 2020-06-12 …
高一数学填空题1.三个数6的0.7次幂、0.7的6次幂、log以0.7为底6的大小关系是2.方程l 2020-08-02 …
将f(x)按迈克劳林展开=f(0)+f'(0)x+1/2*f''(ξ)x^2,对积分∫1/2*f'' 2020-11-02 …
一个对数函数的问题对于f(x)=lnx(x>0),此函数的图像当定义域的x取值无限向0逼近时,此函数 2020-11-27 …
1、当f(x)=(1+x)的1/x次方时,f(x)的导数怎么求?如何推算2、f(x)=f(lnx)/ 2020-12-28 …