早教吧作业答案频道 -->数学-->
已知k∈R,函数f(x)=lnx-kx.(Ⅰ)若k>0,求函数f(x)的单调区间;(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
题目详情
已知k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
▼优质解答
答案和解析
(Ⅰ)f′(x)=
(x>0)在(0,
)上f'(x)>0,f(x)单调递增,在(
,+∞)上f'(x)<0,f(x)单调递减;
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
⇔
>
⇔
>
令
=t,则t>1,
>
⇔lnt>
令g(t)=lnt-
(t>1)
g'(t)=
>0,所以g(t)在(1,+∞)上单调递增,
故g(t)>g(1)=0,即lnt>
成立,∴x1x2>e2成立.
1-kx |
x |
1 |
k |
1 |
k |
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
2 |
x1+x2 |
lnx1-lnx2 |
x1-x2 |
2 |
x1-x2 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
令
x2 |
x1 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
2(t-1) |
t+1 |
令g(t)=lnt-
2(t-1) |
t+1 |
g'(t)=
(t-1)2 |
t(t+1)2 |
故g(t)>g(1)=0,即lnt>
2(t-1) |
t+1 |
看了已知k∈R,函数f(x)=ln...的网友还看了以下:
几道很简单的二项式定理题目,只要答案就好1.求(2*(x^2)+y)^2展开式2.求(2*(x^3 2020-04-27 …
已知a,b是正常数,a≠b,x,y∈(0,+∞),求证:(a^2/x)+(b^2/y)≥(a+b) 2020-05-21 …
已知a,b,x,y是实数,求证a^2/x+b^2/y>=(a+b)^2/(x+y) 2020-07-25 …
已知Y>X>0求证:2/x+y>2xy/x+y出错了,不好意思x+y/2>2xy/x+y 2020-07-25 …
已知0<x<1,求证a^2/x+b^2/1-x≥(a+b)^2详解.基本不等式 2020-07-25 …
1.求:怎么证明2^x是增函数?2.怎么样证明2^x+(1/2)^x是在正实数范围内是增函数f(x 2020-08-01 …
谁能帮我教我解几道简单的基本不等式和柯西不等式题目已知(X^2)+2(Y^2)=1求X+2Y的最值 2020-08-03 …
已知1/x-1/x+1=1/x(x+1)求1/x(x+1)+1/(x+1)(x+2).1/(x+99 2020-10-31 …
不等式证明已知1≤x^2+y^2≤2,求证:1/2≤x^2+y^2-xy≤3 2020-11-01 …
求证对于任意整数X都有f(x)=1/6*x^3+5/6*x都是整数..据我所知只要能够证明2|xor 2020-11-06 …