早教吧作业答案频道 -->数学-->
已知k∈R,函数f(x)=lnx-kx.(Ⅰ)若k>0,求函数f(x)的单调区间;(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
题目详情
已知k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
▼优质解答
答案和解析
(Ⅰ)f′(x)=
(x>0)在(0,
)上f'(x)>0,f(x)单调递增,在(
,+∞)上f'(x)<0,f(x)单调递减;
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
⇔
>
⇔
>
令
=t,则t>1,
>
⇔lnt>
令g(t)=lnt-
(t>1)
g'(t)=
>0,所以g(t)在(1,+∞)上单调递增,
故g(t)>g(1)=0,即lnt>
成立,∴x1x2>e2成立.
1-kx |
x |
1 |
k |
1 |
k |
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
2 |
x1+x2 |
lnx1-lnx2 |
x1-x2 |
2 |
x1-x2 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
令
x2 |
x1 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
2(t-1) |
t+1 |
令g(t)=lnt-
2(t-1) |
t+1 |
g'(t)=
(t-1)2 |
t(t+1)2 |
故g(t)>g(1)=0,即lnt>
2(t-1) |
t+1 |
看了已知k∈R,函数f(x)=ln...的网友还看了以下:
f(x)在0,正无穷)上连续,在(0,正无穷)上可导并满足f(0)=0,f(x)>=0,f(x)= 2020-05-14 …
证明函数f(x)=x³+x在R上是增函数.用定义法证明能证出是增函数,而把原式改成f(x)=x(x 2020-05-21 …
设f(x)是定义域在R上的函数,且对于任意x,y∈R,恒有f(x+y)=f(x)f(y),且x>0 2020-05-23 …
证明f(x),g(x)为R上的单调函数.证f(g(x))也是R上的单调函数 2020-06-22 …
已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x 2020-07-13 …
若f(x)是单调(或连续)函数且满足f(x+y)=f(x)+f(y)(x,y∈R)、则f(x)=x 2020-07-30 …
高一数学题(怕没人回答,所以答完了再给分,设定义在R上的函数f(x),对任意x,y∈R,有f(x+ 2020-08-01 …
1.函数f(x)=2x*x-3│x│的单调减区间是什么?2.设y=f(x)再R上为单调函数,则方程 2020-08-02 …
设定义在R上的函数F(X),对任意X,Y∈R有F(X+Y)=F(X)f(Y)设定义在R上的函数f( 2020-08-02 …
1.证明函数f(x)=-x^2在(负无穷,0)上是增函数,在(0,正无穷)上是减函数.2.判断函数f 2020-12-23 …