早教吧作业答案频道 -->数学-->
已知k∈R,函数f(x)=lnx-kx.(Ⅰ)若k>0,求函数f(x)的单调区间;(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
题目详情
已知k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
▼优质解答
答案和解析
(Ⅰ)f′(x)=
(x>0)在(0,
)上f'(x)>0,f(x)单调递增,在(
,+∞)上f'(x)<0,f(x)单调递减;
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
⇔
>
⇔
>
令
=t,则t>1,
>
⇔lnt>
令g(t)=lnt-
(t>1)
g'(t)=
>0,所以g(t)在(1,+∞)上单调递增,
故g(t)>g(1)=0,即lnt>
成立,∴x1x2>e2成立.
1-kx |
x |
1 |
k |
1 |
k |
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
2 |
x1+x2 |
lnx1-lnx2 |
x1-x2 |
2 |
x1-x2 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
令
x2 |
x1 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
2(t-1) |
t+1 |
令g(t)=lnt-
2(t-1) |
t+1 |
g'(t)=
(t-1)2 |
t(t+1)2 |
故g(t)>g(1)=0,即lnt>
2(t-1) |
t+1 |
看了已知k∈R,函数f(x)=ln...的网友还看了以下:
巧解未知数x.x-85%x=1.05x:514=21:588.5-0.5x=4.518:14=11 2020-04-07 …
求未知数x.(1)549-x=245(2)93×x=2604(3)987+x=2005(4)214 2020-04-07 …
求未知数X.X÷109=27+23(569+4827)÷X=284100×(X+100)=1200 2020-04-07 …
利用因式分解求值.(1)5x(a-2)+4x(2-a),其中x=0.4,a=102.(2)不解方程 2020-04-08 …
已知函数f(x)=23x+12,h(x)=x.设函数F(x)=18f(x)-x2[h(x)]2,求 2020-04-26 …
已知f(x)是2次函数.若f(0)=0.f(x+1)=f(x)+x+1,求f(x)..已知…已知f 2020-04-27 …
已知二次函数y=4x^2+5x+1,求当y=0时的x的值.已知二次函数y=x^2-kx-15,当x 2020-04-27 …
对m∈(0,5】,不等式x^2+(2m-1)x>4x+2m-4 恒成立 我看到的答案是x<-6或x 2020-05-16 …
(1)已知x>-1,n∈N*,求证:(1+x)n≥1+nx(2)已知m>0,n∈N*,ex≥m+n 2020-05-17 …
如果已知x+y=5,那么x+y+6=11,反之,如果已知x+y+6=11,那么x+y=5.在以上运 2020-06-03 …