早教吧作业答案频道 -->数学-->
已知k∈R,函数f(x)=lnx-kx.(Ⅰ)若k>0,求函数f(x)的单调区间;(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
题目详情
已知k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
▼优质解答
答案和解析
(Ⅰ)f′(x)=
(x>0)在(0,
)上f'(x)>0,f(x)单调递增,在(
,+∞)上f'(x)<0,f(x)单调递减;
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
⇔
>
⇔
>
令
=t,则t>1,
>
⇔lnt>
令g(t)=lnt-
(t>1)
g'(t)=
>0,所以g(t)在(1,+∞)上单调递增,
故g(t)>g(1)=0,即lnt>
成立,∴x1x2>e2成立.
1-kx |
x |
1 |
k |
1 |
k |
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
2 |
x1+x2 |
lnx1-lnx2 |
x1-x2 |
2 |
x1-x2 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
令
x2 |
x1 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
2(t-1) |
t+1 |
令g(t)=lnt-
2(t-1) |
t+1 |
g'(t)=
(t-1)2 |
t(t+1)2 |
故g(t)>g(1)=0,即lnt>
2(t-1) |
t+1 |
看了已知k∈R,函数f(x)=ln...的网友还看了以下:
一个整式与多项式x的平方减y的平方的差为x的平方加y的平方,则这个整式为()一个整式与多项式x的平 2020-04-22 …
已知定义域为R的函数f(X)=-2的X次方(指数函数)+a除以2的X次方+1为奇函数.1,求a的值 2020-05-02 …
设P(x+a,y1),Q(x,y2),R(2+a,y3)是函数f(x)=y的反函数图象上不同的三点 2020-05-02 …
用三连格(横的或竖的)去框右面表格中的数,每次框三个数.是11~70之间.(1)框出的三个数的和最 2020-05-13 …
已知向量a=(cosx+sinx,sinx),b=(cosx-sinx,2cosx)设f(x)=a 2020-05-15 …
已知函数f(x)=lg[(a-1)x^2+2x+1](1)若函数f(x)的定义域是R,求实数a的取 2020-05-15 …
在探究“影响滑动摩擦力大小的因素”的实验中.(1)为了探究滑动摩擦力与速度大小的关系 在不同速度下 2020-05-16 …
《我身上裹着的是我的父母》阅读答案北极,被称为世界的冰窖.在这儿,生活着一种浑身长满绒毛的鸟儿—— 2020-05-16 …
这道高三函数题怎么做?函数f(x)的定义域为R,若f(x+1)与飞(x-1)都是奇函数,则A.f( 2020-05-20 …
我想知道第3问如何推出的f(x)=f(2-x)=-f(x-2)=-f(4-x)=f(x-4)?原题 2020-05-23 …