早教吧作业答案频道 -->数学-->
已知k∈R,函数f(x)=lnx-kx.(Ⅰ)若k>0,求函数f(x)的单调区间;(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
题目详情
已知k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
▼优质解答
答案和解析
(Ⅰ)f′(x)=
(x>0)在(0,
)上f'(x)>0,f(x)单调递增,在(
,+∞)上f'(x)<0,f(x)单调递减;
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
⇔
>
⇔
>
令
=t,则t>1,
>
⇔lnt>
令g(t)=lnt-
(t>1)
g'(t)=
>0,所以g(t)在(1,+∞)上单调递增,
故g(t)>g(1)=0,即lnt>
成立,∴x1x2>e2成立.
1-kx |
x |
1 |
k |
1 |
k |
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
2 |
x1+x2 |
lnx1-lnx2 |
x1-x2 |
2 |
x1-x2 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
令
x2 |
x1 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
2(t-1) |
t+1 |
令g(t)=lnt-
2(t-1) |
t+1 |
g'(t)=
(t-1)2 |
t(t+1)2 |
故g(t)>g(1)=0,即lnt>
2(t-1) |
t+1 |
看了已知k∈R,函数f(x)=ln...的网友还看了以下:
已知函数f(x)=sin(2x+φ),其中|φ|<π,若f(x)≤|f(π6)|对x∈R恒成立,且 2020-04-12 …
已知定义在R上的函数f(x)既是偶函数,又是周期为π的函数,且当x∈0,π/2时,f(x)=sin 2020-04-12 …
已知函数f(x)=sin(2x+φ)(φ∈R),若f(x)≤|f(π6)|对x∈R恒成立,且f(π 2020-04-12 …
已知函数f(x)=x^2-((k+1)^2)x+1,若存在x1∈[k,k+1],x2∈[k+2,k 2020-05-17 …
小时代1.0里面的f**k是什么意思?就席城说的:“Icanf**kyou,butit’snotf 2020-05-17 …
二维随机变量求密度函数这题我没做完.密度函数求郁闷了()而且z>=2的f(x)和答案不一样,是不是 2020-05-17 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
已知随机变量X,Y相互独立,且都服从标准正态分布,则X2+Y2服从()A.自由度为1的Χ2分布B. 2020-06-10 …
已知函数f(x)=1+lnx-k(x-2)x,其中k为常数.(1)若k=0,求曲线y=f(x)在点 2020-07-16 …
一个完全二叉树上有101个结点,其中叶子结点的个数应该是多少,为什么?用下面公式,公式:2的(k- 2020-07-18 …