早教吧作业答案频道 -->数学-->
已知k∈R,函数f(x)=lnx-kx.(Ⅰ)若k>0,求函数f(x)的单调区间;(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
题目详情
已知k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
▼优质解答
答案和解析
(Ⅰ)f′(x)=
(x>0)在(0,
)上f'(x)>0,f(x)单调递增,在(
,+∞)上f'(x)<0,f(x)单调递减;
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
⇔
>
⇔
>
令
=t,则t>1,
>
⇔lnt>
令g(t)=lnt-
(t>1)
g'(t)=
>0,所以g(t)在(1,+∞)上单调递增,
故g(t)>g(1)=0,即lnt>
成立,∴x1x2>e2成立.
1-kx |
x |
1 |
k |
1 |
k |
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
2 |
x1+x2 |
lnx1-lnx2 |
x1-x2 |
2 |
x1-x2 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
令
x2 |
x1 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
2(t-1) |
t+1 |
令g(t)=lnt-
2(t-1) |
t+1 |
g'(t)=
(t-1)2 |
t(t+1)2 |
故g(t)>g(1)=0,即lnt>
2(t-1) |
t+1 |
看了已知k∈R,函数f(x)=ln...的网友还看了以下:
已知函数f(x)=23x+12,h(x)=x.设函数F(x)=18f(x)-x2[h(x)]2,求 2020-04-26 …
函数单调性以及单调区间怎么求啊?f(x)=1/(1+x^2)在区间(0,1)上的单调性f(x)=x 2020-04-27 …
函数f(x)=x^2-4x+c与函数g(x)=x+a/x在区间(0,+∞)上的同一点处有相同的最小 2020-05-13 …
(2013•南开区一模)已知函数f(x)=ax+blnx+c(a,b,c为常数且a,b,c∈Q)在 2020-05-13 …
已知:二次函数g(x)=ax2-2ax+b+1(a>0)在区间[2,3]上有最大值4,最小值1.( 2020-05-13 …
1.设函数y=f(x)的定义域为A,则集合P={(x,y)|y=f(x),x∈A}与Q={y|y= 2020-05-14 …
(2014•闵行区一模)已知f(x)=x+1|x|.(1)指出的f(x)值域;(2)求函数f(x) 2020-05-16 …
①我们已经知道,在某个区间(a,b)内,如果f'(x)>0,那么函数y=f(x)在这个区间内单调递 2020-05-17 …
(2013•吴中区模拟)求未知数X.73:X=0.4:976X+0.5×7=61214÷X=0.7 2020-05-17 …
数学题已知函数f(x)=lnx,g(x)=a/x(a>0),设F(x)=f(x)+g(x).已知函 2020-06-08 …