早教吧作业答案频道 -->数学-->
已知k∈R,函数f(x)=lnx-kx.(Ⅰ)若k>0,求函数f(x)的单调区间;(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
题目详情
已知k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
▼优质解答
答案和解析
(Ⅰ)f′(x)=
(x>0)在(0,
)上f'(x)>0,f(x)单调递增,在(
,+∞)上f'(x)<0,f(x)单调递减;
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
⇔
>
⇔
>
令
=t,则t>1,
>
⇔lnt>
令g(t)=lnt-
(t>1)
g'(t)=
>0,所以g(t)在(1,+∞)上单调递增,
故g(t)>g(1)=0,即lnt>
成立,∴x1x2>e2成立.
1-kx |
x |
1 |
k |
1 |
k |
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
2 |
x1+x2 |
lnx1-lnx2 |
x1-x2 |
2 |
x1-x2 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
令
x2 |
x1 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
2(t-1) |
t+1 |
令g(t)=lnt-
2(t-1) |
t+1 |
g'(t)=
(t-1)2 |
t(t+1)2 |
故g(t)>g(1)=0,即lnt>
2(t-1) |
t+1 |
看了已知k∈R,函数f(x)=ln...的网友还看了以下:
f(x)=f(lnx)/x的导数怎么推算得出?书上的答案是f'(lnx)/x*x-f(lnx)/x 2020-05-14 …
一个关于多元函数求微分的问题f(lnx,y/x)=[x^2+x(lny-lnx)]/(y+xlnx 2020-06-05 …
f(lnx)=lnx,那f(x)=多少,如题 2020-06-06 …
f(lnx)^2-2xf(lnx)x^2lnx=0,f(0)=0,则f(x) 2020-06-12 …
f(x)的导数跟f(lnx)的导数有什么不同那么f(x)等于e^-x求f(lnx)的导数等于多少呢 2020-07-07 …
那么f(x)等于e^-x求f(lnx)的导数等于多少呢,那么f(x)等于e^-x求f(lnx)的导 2020-07-22 …
一道数学必修一的题目.已知函数:f(x)=y在R上的图像是一条连续不断的曲线,且f(1)*f(2) 2020-08-01 …
设函数f(x)=xe2x+c(e=2.71828…是自然对数的底数,c∈R).(Ⅰ)求f(x)的单 2020-08-02 …
把一重为G、初速度为零的物体,用一个水平推力F压在竖直的足够高的平整的墙上,如图所示.力F与时间的关 2020-11-02 …
1、当f(x)=(1+x)的1/x次方时,f(x)的导数怎么求?如何推算2、f(x)=f(lnx)/ 2020-12-28 …