早教吧作业答案频道 -->数学-->
已知k∈R,函数f(x)=lnx-kx.(Ⅰ)若k>0,求函数f(x)的单调区间;(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
题目详情
已知k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
▼优质解答
答案和解析
(Ⅰ)f′(x)=
(x>0)在(0,
)上f'(x)>0,f(x)单调递增,在(
,+∞)上f'(x)<0,f(x)单调递减;
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
⇔
>
⇔
>
令
=t,则t>1,
>
⇔lnt>
令g(t)=lnt-
(t>1)
g'(t)=
>0,所以g(t)在(1,+∞)上单调递增,
故g(t)>g(1)=0,即lnt>
成立,∴x1x2>e2成立.
1-kx |
x |
1 |
k |
1 |
k |
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
2 |
x1+x2 |
lnx1-lnx2 |
x1-x2 |
2 |
x1-x2 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
令
x2 |
x1 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
2(t-1) |
t+1 |
令g(t)=lnt-
2(t-1) |
t+1 |
g'(t)=
(t-1)2 |
t(t+1)2 |
故g(t)>g(1)=0,即lnt>
2(t-1) |
t+1 |
看了已知k∈R,函数f(x)=ln...的网友还看了以下:
请问Y'=(lnx)^x等于多少我的答案是:高lnx=a令:y'=a^x求导,再代入lnx.a^x 2020-05-13 …
高数代换问题,微分方程,设y=x/lnx是微分方程y'=y/x+φ(x/y)的解,则φ(x/y)的 2020-05-16 …
请问这个函数可不可以这样求导设f(X)=1/lnx-1/(lnx)²设t=lnx则f(x)=-t² 2020-06-04 …
已知函数f(x)=1+lnx-k(x-2)x,其中k为常数.(1)若k=0,求曲线y=f(x)在点 2020-07-16 …
已知函数f(x)=lnx,g(x)=ax(a∈R)(1)若函数y=f(x)和y=g(x)的图象无公 2020-07-26 …
lnx/(1+x)的不定积分,分部积分法,得到了一个循环式如下(1)∫lnx/1+xdx=lnxl 2020-08-03 …
已知函数f(x)=1+lnx-k(x-2)x,其中k为常数.(1)若k=0,求曲线y=f(x)在点( 2020-11-01 …
已知函数f(x)=(ax+1)lnx-12ax2-bx+bex(a,b∈R).(1)若a=b=12, 2020-11-01 …
已知函数fx=a(x^2+1)+lnx.讨论函数fx的单调性.若对任意a属于(-4已知函数fx=a( 2020-11-02 …
已知函数f(x)=lnx-ax(a∈R)(Ⅰ)若函数f(x)无零点,求实数a的取值范围;(Ⅱ)若存在 2020-12-26 …