早教吧作业答案频道 -->数学-->
已知k∈R,函数f(x)=lnx-kx.(Ⅰ)若k>0,求函数f(x)的单调区间;(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
题目详情
已知k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
▼优质解答
答案和解析
(Ⅰ)f′(x)=
(x>0)在(0,
)上f'(x)>0,f(x)单调递增,在(
,+∞)上f'(x)<0,f(x)单调递减;
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
⇔
>
⇔
>
令
=t,则t>1,
>
⇔lnt>
令g(t)=lnt-
(t>1)
g'(t)=
>0,所以g(t)在(1,+∞)上单调递增,
故g(t)>g(1)=0,即lnt>
成立,∴x1x2>e2成立.
1-kx |
x |
1 |
k |
1 |
k |
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
2 |
x1+x2 |
lnx1-lnx2 |
x1-x2 |
2 |
x1-x2 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
令
x2 |
x1 |
x2 |
x1 |
2(x2-x1) |
x1+x2 |
2(t-1) |
t+1 |
令g(t)=lnt-
2(t-1) |
t+1 |
g'(t)=
(t-1)2 |
t(t+1)2 |
故g(t)>g(1)=0,即lnt>
2(t-1) |
t+1 |
看了已知k∈R,函数f(x)=ln...的网友还看了以下:
已知函数f(x)是定义在示数集R上不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f 2020-04-05 …
已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数X都有Xf(X+1)=(1+X) 2020-04-05 …
已知函数f(x)是定义在实数集R上恒不为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f 2020-04-05 …
已知函数fx是定义在实数集R上的不恒为零的偶函数,对任意实数x有xf(x+1)=(1+x)f(x) 2020-04-05 …
已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x) 2020-04-05 …
已知函数f(x)是定义在实数集R上的不恒为零的偶函数且对任意实数x都有xf(x+1)=(1+x)f 2020-04-05 …
不恒为零的偶函数是什么意思对于任意的奇偶函数都有f(0)=0么 2020-06-04 …
xf(x+1)=(1+x)f(x)已知函数f(x)是实数集R上的不恒为零的偶函数然后满足上面条件问 2020-06-12 …
f(x)在R上是不恒为零的偶函数,且对任意x都有xf(x+1)=(1+x)f(x),求f(5/2) 2020-06-27 …
已知函数fx是定义在实数集R上的不恒为零的偶函数,对任意实数x有xf(x+1)=(1+x)f(x), 2020-11-18 …