早教吧 育儿知识 作业答案 考试题库 百科 知识分享

命题p:正实数a,b满足a2+b2=1;命题q:正实数a,b满足a3+b3+1=m(a+b+1)3,若“p∧q”为真命题,则m的取值范围是[32−42,14)[32−42,14).

题目详情
命题p:正实数a,b满足a2+b2=1;命题q:正实数a,b满足a3+b3+1=m(a+b+1)3,若“p∧q”为真命题,则m的取值范围是
[
3
2
−4
2
1
4
[
3
2
−4
2
1
4
▼优质解答
答案和解析
∵正实数a,b满足a2+b2=1,∴令a=cosθ,b=sinθ,θ∈(0,
π
2
),t=cosθ+sinθ=
2
sin(θ+
π
4

则t∈(1,
2
],sinθcosθ=
t2−1
2
.由a3+b3+1=m(a+b+1)3,得
1
m
=
(a+b+1)3
a3+b3+1
=
(sinθ+cosθ+1)3
sin3θ+cos3θ+1

=
(t+1)3
t(1−
t2−1
2
)+1
=
2(t+1)3
t3−3t−2
=-
2(t+1)
t−2
,∴m=m(t)=-
1
2
+
3
2t+2
在(1,
2
]上是递减函数,
∴m<m(1)=
1
4

m≥m(
2
)=
3
2
−4
2
,故m的取值范围是[
3
2
−4
2
1
4


故答案为:[
3
2
−4
2
1
4