早教吧 育儿知识 作业答案 考试题库 百科 知识分享

平面向量2题1若e1,e2是一组基底,且a=e1+e2,b=e1-2e2,c=2e1+3e2则用向量b,c来表示a的式子为?2证明:以三角形三边上的中线为边可以作成一个三角形

题目详情
平面向量2题
1若e1,e2是一组基底,且a=e1+e2,b=e1-2e2,c=2e1+3e2
则用向量b,c来表示a的式子为?
2证明:以三角形三边上的中线为边可以作成一个三角形
▼优质解答
答案和解析
1.令a=nb+mc,有
a=ne1-2ne2+2me1+3me2=(n+2m)e1+(-2n+3m)e2=e1+e2
得n+2m=1和-2n+3m=1=>n=1/7,m=3/7.即a=b/7+3c/7
2.设三角形三个角A、B、C分别对应对边的中点A'、B'、C',有矢量关系如下:
1.AA',BB',CC'交于三角形的重点,因此三个矢量不共线
2.AA'=(AB+AC)/2,BB'=(BA+BC)/2,CC'=(CA+CB)/2
AA'+BB'=(AB+AC+BA+BC)/2=(AC+BC)/2=-CC'.即AA',BB',-CC'定构成三角形.
这三个矢量的模|AA'|,|BB'|,|-CC'|任意两个之和必大于第三个
而|-CC'|=|CC'|,因此三角形三边上的中线为边可以作成一个三角形.