早教吧作业答案频道 -->数学-->
解方程组x^2+2yz=x,y^2+2zx=z,z^2+2xy=y
题目详情
解方程组 x^2+2yz=x ,y^2+2zx=z ,z^2+2xy=y
▼优质解答
答案和解析
三式相加:x^2+y^2+z^2+2xy+2xz+2yz=x+y+z
即(x+y+z)^2=(x+y+z)
得(x+y+z)(x+y+z-1)=0
因此x+y+z=0,或x+y+z=1
2)-3):y^2-z^2+2x(z-y)=z-y,得:(y-z)(y+z-2x+1)=0,得y=z或y+z-2x+1=0
因此分四种情况:
1)x+y+z=0,y=z,得:x=-2y,代入1) 4y^2+2y^2=-2y,得:3y^2+y=0,得;y=0,-1/3
此时解为:(0.0.0).(2/3,-1/3.-1/3)
2)x+y+z=0,y+z-2x+1=0,两式相减:3x-1=0,得x=1/3,y+z=-1/3,2yz=x-x^2=1/3-1/9=-2/9
即yz=-1/9,解得:y,z=(-1+√5)/6,(-1-√5)/6
此时解为:(1/3,(-1+√5)/6,(-1-√5)/6),(1/3,(-1-√5)/6,(-1+√5)/6),
3)x+y+z=1,y=z,得x=1-2y,代入2):y^2+2y(1-2y)=y,得:y=0,1/3
此时解为:(1,0.0),(1/3.1/3,1/3)
4)x+y+z=1,y+z-2x+1=0,两式相减:3x-1=1,得x=2/3,y+z=1/3,2yz=x-x^2=2/3-4/9=2/9
即yz=1/9,此时无实根
即(x+y+z)^2=(x+y+z)
得(x+y+z)(x+y+z-1)=0
因此x+y+z=0,或x+y+z=1
2)-3):y^2-z^2+2x(z-y)=z-y,得:(y-z)(y+z-2x+1)=0,得y=z或y+z-2x+1=0
因此分四种情况:
1)x+y+z=0,y=z,得:x=-2y,代入1) 4y^2+2y^2=-2y,得:3y^2+y=0,得;y=0,-1/3
此时解为:(0.0.0).(2/3,-1/3.-1/3)
2)x+y+z=0,y+z-2x+1=0,两式相减:3x-1=0,得x=1/3,y+z=-1/3,2yz=x-x^2=1/3-1/9=-2/9
即yz=-1/9,解得:y,z=(-1+√5)/6,(-1-√5)/6
此时解为:(1/3,(-1+√5)/6,(-1-√5)/6),(1/3,(-1-√5)/6,(-1+√5)/6),
3)x+y+z=1,y=z,得x=1-2y,代入2):y^2+2y(1-2y)=y,得:y=0,1/3
此时解为:(1,0.0),(1/3.1/3,1/3)
4)x+y+z=1,y+z-2x+1=0,两式相减:3x-1=1,得x=2/3,y+z=1/3,2yz=x-x^2=2/3-4/9=2/9
即yz=1/9,此时无实根
看了解方程组x^2+2yz=x,y...的网友还看了以下:
设x,y,z∈R+,求证:xyz(x+y+z+√(x^2+y^2+z^2))/(x^2+y^2+z 2020-06-02 …
z=2-(x^2+y^2)这个是什么图形啊因为在做曲面积分的题目最后要换成极坐标做的但看不出R的上 2020-06-15 …
一个二阶偏导数的问题,x^2+y^2+z^2=4z,设F(x,y,z)=x^2+y^2+z^2-4 2020-07-13 …
请找出函数f(x,y,z)=x^2*y^2*z^2受约束于x^2+y^2+z^2=1的最高(大)与 2020-07-14 …
设F(u,v)有连续偏导数,方程F(x+y+z,x^2+y^2+z^2)=0确定函数z=f(x,y 2020-07-29 …
(a+b+c)/3大于等于3*√abc设a=x^3,b=y^3,c=z^3x,y,z是非负数时x^3 2020-11-01 …
由(x^2+y^2+z^2)*(x+y+z)=x^3+y^3+z^3+(x+y)z^2+(y+z)x 2020-11-01 …
已知道2[√X+√(Y-1)+√(Z-2)]=X+Y+Z,求X,Y,Z2[√X+√(Y-1)+√(Z 2020-11-01 …
对称式的问题1.证明:3个变数多项式f(x,y,z)=x(y-z)^2+y(z-x)^2+z(x-y 2020-11-07 …
求Ω={(x,y,z)|√(x^2+y^2)≤z≤√(2-x^2-y^2)}在Oxy平面的投影域书上 2020-11-11 …