早教吧作业答案频道 -->数学-->
设正实数x,y,z满足x^2+y^2+z^2=1,求证x^2yz+y^2xz+z^2xy
题目详情
设正实数x,y,z满足x^2+y^2+z^2=1,求证x^2yz+y^2xz+z^2xy
▼优质解答
答案和解析
答:
x,y,z>0,
xy/z+yz/x≥2y(均值不等式)
xy/z+xz/y≥2x
yz/x+xz/y≥2z
三式相加,
xy/z+yz/x+xz/y≥x+y+z
两边同乘以xyz
x^2y^2+y^2z^2+x^2z^2≥x^2yz+y^2xz+z^2xy
(xy+yz+xz)^2=x^2y^2+y^2z^2+x^2z^2+2(x^2yz+y^2xz+z^2xy)
≥3(x^2yz+y^2xz+z^2xy)
另外(x-y)^2+y^2+(z-x)^2≥0,展开
x^2+y^2+z^2≥xy+yz+xz
所以1^2≥3(x^2yz+y^2xz+z^2xy)
x^2yz+y^2xz+z^2xy≤1/3.
如果知道排序不等式,这样证比较简单
3(x^2yz+y^2xz+z^2xy)
≤3(x^2y^2+y^2z^2+z^2x^2)
≤2(x^2y^2+y^2z^2+z^2x^2)+(x^4+y^4+z^4)
=(x^2+y^2+z^2)^2=1
所以x^2yz+y^2xz+z^2xy≤1/3.
x,y,z>0,
xy/z+yz/x≥2y(均值不等式)
xy/z+xz/y≥2x
yz/x+xz/y≥2z
三式相加,
xy/z+yz/x+xz/y≥x+y+z
两边同乘以xyz
x^2y^2+y^2z^2+x^2z^2≥x^2yz+y^2xz+z^2xy
(xy+yz+xz)^2=x^2y^2+y^2z^2+x^2z^2+2(x^2yz+y^2xz+z^2xy)
≥3(x^2yz+y^2xz+z^2xy)
另外(x-y)^2+y^2+(z-x)^2≥0,展开
x^2+y^2+z^2≥xy+yz+xz
所以1^2≥3(x^2yz+y^2xz+z^2xy)
x^2yz+y^2xz+z^2xy≤1/3.
如果知道排序不等式,这样证比较简单
3(x^2yz+y^2xz+z^2xy)
≤3(x^2y^2+y^2z^2+z^2x^2)
≤2(x^2y^2+y^2z^2+z^2x^2)+(x^4+y^4+z^4)
=(x^2+y^2+z^2)^2=1
所以x^2yz+y^2xz+z^2xy≤1/3.
看了设正实数x,y,z满足x^2+...的网友还看了以下:
高数复合偏导数问题!设f具有二阶连续偏导数,z=f(x²y,y/x),求δ²z/δxδy.δz/δ 2020-07-08 …
已知复数z=x+yi(x,y属于R,x大于等于1)满足/z-2/=x,求z在复平面内对应点的轨迹. 2020-07-16 …
初一化简求值4(x-y+z)-2(x+y-z)-3(-x-y-z).2(x2-2xy+y2-3)+ 2020-07-20 …
1已知x,y,z为实数,且满足:x+2y-z=6,x-y+2z=3求:x^2+y^2+z^2的最小 2020-07-21 …
已知复数z=x+yi(x,y∈R,),满足|z-1|=x,那么z在复平面上对应的点(x,y)的轨迹 2020-08-01 …
已知f(z)=u(x,y)+iv(x,y)为复平面内满足u(x,y)+v(x,y)=2xy的解析函 2020-08-01 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
设正实数x,y,z满足x^2+y^2+z^2=1,求证x^2yz+y^2xz+z^2xy 2020-11-01 …
设正数x,y,z,满足不等式:x^2+y^2-z^2/2xy+y^2+z^2-x^2/2yz+z^2 2020-11-01 …
正数x,y,z满足不等式(x^2+y^2-z^2)/2xy+(y^2+z^2-x^2)/2yz+(x 2020-11-01 …