早教吧作业答案频道 -->数学-->
0-90°时,1+cos2x+8sin平方x/sin2x的最小值为?
题目详情
0-90°时,1+cos2x+8sin平方x/sin2x的最小值为?
▼优质解答
答案和解析
cos2x=1-2sin^2x
2sin^2x=1-cos2x
8sin^2x=4-4cos2x
y=f(x)=(1+cos2x+8sin^2x)/sin2x
=(1+cos2x+4-4cos2x)/sin2x
=(5-3cos2x)/sin2x
=(5-3cos2x)/√[1-(cos2x)^2]
已知00
∴y>0
y*√[1-(cos2x)^2]=5-3cos2x
y^2*[1-(cos2x)^2]=(5-3cos2x)^2
(9+y^2)*(cos2x)^2-30(cos2x)+25-y^2=0
上方程未知数为(cos2x)的判别式△≥0,即
(-30)^2-4*(9+y^2)*(25-y^2)≥0
y^4-16y^2≥0
y^2*(y+4)*(y-4))≥0
y≥4(另一解y≤-4舍去)
y的最小值=4
y=4
(9+y^2)*(cos2x)^2-30(cos2x)+25-y^2=0
(5cos2x-3)^2=0
cos2x=3/5,sin2x=4/5
y=f(x)=(1+cos2x+8sin^2x)/sin2x
=(1+cos2x+4-4cos2x)/sin2x
=(5-3cos2x)/sin2x
=(5-3*3/5)/(4/5)
=4
答:当0
2sin^2x=1-cos2x
8sin^2x=4-4cos2x
y=f(x)=(1+cos2x+8sin^2x)/sin2x
=(1+cos2x+4-4cos2x)/sin2x
=(5-3cos2x)/sin2x
=(5-3cos2x)/√[1-(cos2x)^2]
已知00
∴y>0
y*√[1-(cos2x)^2]=5-3cos2x
y^2*[1-(cos2x)^2]=(5-3cos2x)^2
(9+y^2)*(cos2x)^2-30(cos2x)+25-y^2=0
上方程未知数为(cos2x)的判别式△≥0,即
(-30)^2-4*(9+y^2)*(25-y^2)≥0
y^4-16y^2≥0
y^2*(y+4)*(y-4))≥0
y≥4(另一解y≤-4舍去)
y的最小值=4
y=4
(9+y^2)*(cos2x)^2-30(cos2x)+25-y^2=0
(5cos2x-3)^2=0
cos2x=3/5,sin2x=4/5
y=f(x)=(1+cos2x+8sin^2x)/sin2x
=(1+cos2x+4-4cos2x)/sin2x
=(5-3cos2x)/sin2x
=(5-3*3/5)/(4/5)
=4
答:当0
看了0-90°时,1+cos2x+...的网友还看了以下:
设3阶实对称矩阵A的特征值为-1,1,1,属于特征值-1的特征向量为a=[011]^t.(1)求A 2020-04-13 …
设3阶实对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于特 2020-05-14 …
[1]已知矩阵,若矩阵A属于特征值6的一个特征向量为,属于特征值1的一个特征向量为.(1)求矩阵A 2020-05-14 …
(附加题)设矩阵A=,若矩阵A的属于特征值1的一个特征向量为,属于特征值2的一个特征向量为,求实数 2020-05-14 …
已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量并有特征值λ2=-1及属于特征值-1的一 2020-05-14 …
已知二阶矩阵A的属于特征值-1的一个特征向量为1-3,属于特征值3的一个特征向量为11,求矩阵A. 2020-05-14 …
选修4-2:矩阵与变换已知矩阵A=ab14,若矩阵A属于特征值1的一个特征向量为α1=3−1,属于 2020-05-14 …
大学矩阵设λ1,λ2是n阶实对称矩阵A的两个不同特征值,α是A的对应于特征值λ1的一个单位特征向量 2020-05-14 …
已知矩阵M=2abc,其中a,b,c∈R,若点P(1,-2)在矩阵M的变换下得到点Q(-4,0), 2020-05-14 …
函数f(x)=|x-1|+1极小值函数(x-1)的绝对值+1的极小值 2020-06-03 …