早教吧 育儿知识 作业答案 考试题库 百科 知识分享

计算C1n+2C2n+3C3n+…+nCnn,可以采用以下方法:构造恒等式C0n+C1nx+C2nx2+…+Cnnxn=(1+x)n,两边对x求导,得C1n+2C2nx+3C3nx2+…+nCnnxn−1=n(1+x)n−1,在上式中令x=1,得C1n+2C2n+3C3n+…+nCnn=n•2n−1.类比上

题目详情
计算
C
1
n
+2
C
2
n
+3
C
3
n
+…+n
C
n
n
,可以采用以下方法:构造恒等式
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn=(1+x)n,两边对x求导,得
C
1
n
+2
C
2
n
x+3
C
3
n
x2+…+n
C
n
n
xn−1=n(1+x)n−1,在上式中令x=1,得
C
1
n
+2
C
2
n
+3
C
3
n
+…+n
C
n
n
=n•2n−1.类比上述计算方法,计算
C
1
n
+22
C
2
n
+32
C
3
n
+…+n2
C
n
n
=______.
▼优质解答
答案和解析
对Cn1+2Cn2x+3Cn3x2+…+nCnnxn-1=n(1+x)n-1,两边同乘以x得:
xCn1+2Cn2x2+3Cn3x3+…+nCnnxn=n•x•(1+x)n-1
再两边对x求导
得到:Cn1+22Cn2x+32Cn3x2+…+n2Cnnxn-1=n(1+x)n-1+n(n-1)x(1+x)n-2
在上式中令x=1,得Cn1+22Cn2+32Cn3+…+n2Cnn=n•2n-1+n(n-1)•2n-2=n(n+1)2n-2
故答案为:n(n+1)2n-2