早教吧作业答案频道 -->数学-->
an=4/n,Tn=a1^2+a2^2+a3^2+...+an^2,Sn=32-16/n,比较Tn与Sn的大小
题目详情
an=4/n,Tn=a1^2+a2^2+a3^2+...+an^2,Sn=32-16/n,比较Tn与Sn的大小
▼优质解答
答案和解析
解,
a1 = 4 a2 = 2
T1 = 16 T2 = 20
S1 = 16 S2= 24
设当n = k >=2时,Sn > Tn,则
Sn+1 - Tn+1 = 32 - 16/(n+1) - Tn - (an+1)^2
= Sn - Tn + 16/n -16/(n+1) - (an+1)^2
> 16/n -16/(n+1) - (an+1)^2
= 16/n -16/(n+1) - 16/(n+1)^2
= [16/n/(n+1) ^2] [ (n+1)^2 - n(n+1)-n]
= 16/n/(n+1) ^2 >0
因此,知 Sn > =Tn,仅当 n = 1时取等.
a1 = 4 a2 = 2
T1 = 16 T2 = 20
S1 = 16 S2= 24
设当n = k >=2时,Sn > Tn,则
Sn+1 - Tn+1 = 32 - 16/(n+1) - Tn - (an+1)^2
= Sn - Tn + 16/n -16/(n+1) - (an+1)^2
> 16/n -16/(n+1) - (an+1)^2
= 16/n -16/(n+1) - 16/(n+1)^2
= [16/n/(n+1) ^2] [ (n+1)^2 - n(n+1)-n]
= 16/n/(n+1) ^2 >0
因此,知 Sn > =Tn,仅当 n = 1时取等.
看了 an=4/n,Tn=a1^2...的网友还看了以下:
已知(x+1)n=a+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n,( 2020-05-13 …
已知a1,a2,…,an都是正整数,设M=(a1+a2+…+a1990)(a1+a2+a3+…+a 2020-05-13 …
已知(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n, 2020-05-13 …
已知公差不为0的等差数列{an}的首项为a(a属于R),且1/a1,1/a2,1/a3成等比数列. 2020-05-13 …
1在等差数列an中,a16+a17+a18=a9=-36,其前n项和为sn.(1)求sn的最小值, 2020-05-14 …
若a1,a2,a3……a n均为正数.设M=(a1+a2+………+a n-1)(a2+a3+……a 2020-05-16 …
一道希望杯题目,已知a1.a2.a3.….a2007是彼此互不相等的负数……已知a1.a2.a3. 2020-05-16 …
已知a1,a2,a3,...,a2013,a2014全部是正数,设M=(a1+a2+...+a20 2020-05-16 …
(2014•江西)随机将1,2,…,2n(n∈N*,n≥2)这2n个连续正整数分成A、B两组,每组 2020-07-09 …
随机将1,2,…,2n(n∈N*,n≥2)这2n个连续正整数分成A,B两组,每组n个数,A组最小数 2020-08-02 …