瘦的(adj.)重的(adj.)身材(n.)(在)今晚;(在)今夜(adv.&n.)小的(adj.)电影院(n.)以后(adv.)英俊的(adj.)演员(n.)女演员(n.)人(n.)(
瘦的(adj.) ____
重的(adj.) ____
身材(n.)____
(在) 今晚;(在) 今夜(adv.&n.) ____
小的(adj.) ____
电影院(n. ) ____
以后(adv. ) ____
英俊的(adj.)____
演员(n.)____
女演员(n.) ____
人(n.) ____
(头发) 金黄色的(adj.) ____
圆形的(adj.)____
脸(n. ) ____
thin heavy build tonight little cinema later handsome actor actress person blonde round face
∑(2^n)/(n^n)的收敛性你回答的是:取后一项后前一项的比.(2^n+1)/((n+1)^(n 2020-03-31 …
请问这个题目该怎么解?3-1=27-3=413-7=621-13=831-21=10即a2-a1=2 2020-03-31 …
已知数列{an}中,a1=1且点pn(an,an+1)(n∈N+)在直线x-y+1=0上,(1)求 2020-05-13 …
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n 2020-05-16 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
(1)已知x>-1,n∈N*,求证:(1+x)n≥1+nx(2)已知m>0,n∈N*,ex≥m+n 2020-05-17 …
为什么n(n+1)(n+2)可拆成1/4[n(n+1)(n+2)(n+3)-(n-1)n(n+1) 2020-06-22 …
1.判别级数∑(∞,n=1)(1000)^n/n!的敛散性2.求幂级数∑(∞,n=1)(n+1)^ 2020-06-27 …
数论+集合1.证明5个相继的正整数之积不是完全平方数设n≥3,(n-2)(n-1)n(n+1)(n+ 2020-10-31 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …