早教吧作业答案频道 -->数学-->
设各项均为实数的等比数列{an}的前n项和为Sn,若S10=10,S30=70,则S40等于()A.150B.-200C.150或-200D.400或-50
题目详情
nn103040
▼优质解答
答案和解析
根据等比数列的前n项和的公式化简S1010=10,S3030=70得:
S1010=
=10,S30=
=70,
则
=
=
=7,得到1+q10+q20=7,
即(q10)2+q10-6=0,解得q10=-3(舍去),q10=2,
则
=
=
=
=15,
所以S40=15S10=150.
故选A
a(1−q10) a(1−q10) a(1−q10)10)1−q 1−q 1−q=10,S3030=
=70,
则
=
=
=7,得到1+q10+q20=7,
即(q10)2+q10-6=0,解得q10=-3(舍去),q10=2,
则
=
=
=
=15,
所以S40=15S10=150.
故选A
a(1−q30) a(1−q30) a(1−q30)30)1−q 1−q 1−q=70,
则
=
=
=7,得到1+q10+q20=7,
即(q10)2+q10-6=0,解得q10=-3(舍去),q10=2,
则
=
=
=
=15,
所以S40=15S10=150.
故选A
S30 S30 S3030S10 S10 S1010=
=
=7,得到1+q10+q20=7,
即(q10)2+q10-6=0,解得q10=-3(舍去),q10=2,
则
=
=
=
=15,
所以S40=15S10=150.
故选A
1−q30 1−q30 1−q30301−q10 1−q10 1−q1010=
=7,得到1+q10+q20=7,
即(q10)2+q10-6=0,解得q10=-3(舍去),q10=2,
则
=
=
=
=15,
所以S40=15S10=150.
故选A
(1−q10)(1+q10+q20) (1−q10)(1+q10+q20) (1−q10)(1+q10+q20) 10)(1+q10+q20) 10+q20) 20) 1−q10 1−q10 1−q1010=7,得到1+q1010+q2020=7,
即(q1010)22+q1010-6=0,解得q1010=-3(舍去),q1010=2,
则
=
=
=
=15,
所以S40=15S10=150.
故选A
S40 S40 S4040S10 S10 S1010=
=
=
=15,
所以S40=15S10=150.
故选A
a(1−q40) a(1−q40) a(1−q40)40)1−q 1−q 1−q
a(1−q10) a(1−q10) a(1−q10)10)1−q 1−q 1−q=
=
=15,
所以S40=15S10=150.
故选A
1−(q10)4 1−(q10)4 1−(q10)410)441−q10 1−q10 1−q1010=
=15,
所以S40=15S10=150.
故选A
1−24 1−24 1−2441−2 1−2 1−2=15,
所以S4040=15S1010=150.
故选A
S1010=
a(1−q10) |
1−q |
a(1−q30) |
1−q |
则
S30 |
S10 |
1−q30 |
1−q10 |
(1−q10)(1+q10+q20) |
1−q10 |
即(q10)2+q10-6=0,解得q10=-3(舍去),q10=2,
则
S40 |
S10 |
| ||
|
1−(q10)4 |
1−q10 |
1−24 |
1−2 |
所以S40=15S10=150.
故选A
a(1−q10) |
1−q |
a(1−q30) |
1−q |
则
S30 |
S10 |
1−q30 |
1−q10 |
(1−q10)(1+q10+q20) |
1−q10 |
即(q10)2+q10-6=0,解得q10=-3(舍去),q10=2,
则
S40 |
S10 |
| ||
|
1−(q10)4 |
1−q10 |
1−24 |
1−2 |
所以S40=15S10=150.
故选A
a(1−q30) |
1−q |
则
S30 |
S10 |
1−q30 |
1−q10 |
(1−q10)(1+q10+q20) |
1−q10 |
即(q10)2+q10-6=0,解得q10=-3(舍去),q10=2,
则
S40 |
S10 |
| ||
|
1−(q10)4 |
1−q10 |
1−24 |
1−2 |
所以S40=15S10=150.
故选A
S30 |
S10 |
1−q30 |
1−q10 |
(1−q10)(1+q10+q20) |
1−q10 |
即(q10)2+q10-6=0,解得q10=-3(舍去),q10=2,
则
S40 |
S10 |
| ||
|
1−(q10)4 |
1−q10 |
1−24 |
1−2 |
所以S40=15S10=150.
故选A
1−q30 |
1−q10 |
(1−q10)(1+q10+q20) |
1−q10 |
即(q10)2+q10-6=0,解得q10=-3(舍去),q10=2,
则
S40 |
S10 |
| ||
|
1−(q10)4 |
1−q10 |
1−24 |
1−2 |
所以S40=15S10=150.
故选A
(1−q10)(1+q10+q20) |
1−q10 |
即(q1010)22+q1010-6=0,解得q1010=-3(舍去),q1010=2,
则
S40 |
S10 |
| ||
|
1−(q10)4 |
1−q10 |
1−24 |
1−2 |
所以S40=15S10=150.
故选A
S40 |
S10 |
| ||
|
1−(q10)4 |
1−q10 |
1−24 |
1−2 |
所以S40=15S10=150.
故选A
| ||
|
a(1−q40) |
1−q |
a(1−q40) |
1−q |
a(1−q40) |
1−q |
a(1−q10) |
1−q |
a(1−q10) |
1−q |
a(1−q10) |
1−q |
1−(q10)4 |
1−q10 |
1−24 |
1−2 |
所以S40=15S10=150.
故选A
1−(q10)4 |
1−q10 |
1−24 |
1−2 |
所以S40=15S10=150.
故选A
1−24 |
1−2 |
所以S4040=15S1010=150.
故选A
看了设各项均为实数的等比数列{an...的网友还看了以下:
设各项均为实数的等比数列{an}的前n项和为Sn,若S10=10,S30=70,则S40等于()A. 2020-03-30 …
设各项均为实数的等比数列{an}的前n项和为Sn,若S10=10,S30=70,则S40等于()A. 2020-03-30 …
数学问题(附算式或假设法或画图)有100个桃子,要分给5只大猴子和10只小猴子,你认为应该怎样分合 2020-04-26 …
设各项均为实数的等比数列{an}的前n项和为Sn,若S10=10,S30=70,则S40等于()A 2020-05-21 …
设各项均为实数的等比数列{an}的前n项和为Sn,若S10=10,S30=70,则S40等于()A 2020-05-21 …
数列{an}为各项都是正数的等比数列,Sn为前n项和,且S10=10,S30=70,那么S40() 2020-06-03 …
下面关于电缆穿导管敷设叙述正确的是( )。 A.先将管子敷设好(明设或暗设),再将电缆穿入 2020-06-07 …
用一笔钱单买拖鞋可以买20双,单买袜子可以买60双,现在把一双拖鞋和一双袜子看做一套,这钱可以买多 2020-06-16 …
某次测验共10题,做对一题得10分,做错一题或不做都要扣2分,小兵得了76分,他做对了几题?解设或 2020-06-17 …
求二面角cos值在用空间向量求二面角时求法向量时总有一个令X=什么或令Y=什么或令Z=什么,这个令 2020-06-27 …