早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•嘉兴一模)设数列{an}的前n项和为Sn,4Sn=an2+2an-3,且a1,a2,a3,a4,…,a11成等比数列,当n≥11时,an>0.(Ⅰ)求证:当n≥11时,{an}成等差数列;(Ⅱ)求{an}的前n项和Sn.

题目详情
(2014•嘉兴一模)设数列{an}的前n项和为Sn,4Sn=an2+2an-3,且a1,a2,a3,a4,…,a11成等比数列,当n≥11时,an>0.
(Ⅰ)求证:当n≥11时,{an}成等差数列;
(Ⅱ)求{an}的前n项和Sn
▼优质解答
答案和解析
(Ⅰ)证明:由4Sn=an2+2an−3,4Sn+1=an+12+2an+1−3,
两式相减得4an+1=
a
2
n+1
a
2
n
+2an+1−2an,
∴(an+1+an)(an+1-an-2)=0…(4分)
当n≥11时,an>0,∴an+1-an=2,
∴当n≥11时,{an}成等差数列.                 ….(7分)
(Ⅱ)由4a1=a12+2a1−3,得a1=3或a1=-1
又a1,a2,a3,a4,…,a11成等比数列,
∴an+1+an=0(n≤10),q=-1,
而a11>0,∴a1>0,从而a1=3.
an=
3(−1)n−1(1≤n≤10)
2n−19(n≥11)
,….(11分)
Sn=
3
2
[1−(−1)n]
(1≤n≤10)
n2−18n+80(n≥11)
.                      ….(14分)