早教吧 育儿知识 作业答案 考试题库 百科 知识分享

x,y,z为异于1的实数,则满足XYZ=1,证明X^2/(X-1)+Y^2/(Y^2-1)+Z^2/(Z^2-1)>=1

题目详情
x,y,z 为异于1的实数,则满足XYZ=1,证明X^2/(X-1)+Y^2/(Y^2-1)+Z^2/(Z^2-1)>=1
▼优质解答
答案和解析
x,y,z 为异于1的实数,则满足XYZ=1,证明X²/(X²-1)+Y²/(Y²-1)+Z²/(Z²-1)≥1已知可得z=1/xy原式X²/(X²-1)+Y²/(Y²-1)+1/(1-x²y²)≥1不妨设xy=1.1若y为+∞,...