早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设f(x)是定义在R上的单调增函数,若f(1-ax-x2)≦f(2-a)对∨a∈[-1,1]恒成立,求x的取值范围

题目详情
设f(x)是定义在R上的单调增函数,若f(1-ax-x2) ≦f(2-a)对∨a∈[-1,1]恒成立,求x的取值范围
▼优质解答
答案和解析
1-ax-x²≤2-a;
x²+ax+1-a≥0;
(x+a/2)²+1-a-a²/4≥0;恒成立;
∵a∈[-1,1],
1-a-a²/4=2-(1+a/2)²,最小值=2-9/4=-1/4;
(x+a/2)²≥1/4;
(x+1/2)²≥1/4;
∴x≥0或x≤-1;