早教吧作业答案频道 -->数学-->
(2012•河源)如图,已知△ABC,按如下步骤作图:①分别以A、C为圆心,以大于12AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE
题目详情
(2012•河源)如图,已知△ABC,按如下步骤作图:
①分别以A、C为圆心,以大于
AC的长为半径在AC两边作弧,交于两点M、N;
②连接MN,分别交AB、AC于点D、O;
③过C作CE∥AB交MN于点E,连接AE、CD.
(1)求证:四边形ADCE是菱形;
(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.
①分别以A、C为圆心,以大于
1 |
2 |
②连接MN,分别交AB、AC于点D、O;
③过C作CE∥AB交MN于点E,连接AE、CD.
(1)求证:四边形ADCE是菱形;
(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.
▼优质解答
答案和解析
(1)证明:由题意可知:
∵分别以A、C为圆心,以大于
AC的长为半径在AC两边作弧,交于两点M、N;
∴直线DE是线段AC的垂直平分线,
∴AC⊥DE,即∠AOD=∠COE=90°;
且AD=CD、AO=CO,
又∵CE∥AB,
∴∠1=∠2,
在△AOD和△COE中
,
∴△AOD≌△COE,
∴OD=OE,
∵A0=CO,DO=EO,
∴四边形ADCE是平行四边形,
又∵AC⊥DE,
∴四边形ADCE是菱形;
(2)当∠ACB=90°时,
OD∥BC,
即有△ADO∽△ABC,
∴
=
=
,
又∵BC=6,
∴OD=3,
又∵△ADC的周长为18,
∴AD+AO=9,
即AD=9-AO,
∴OD=
=3,
可得AO=4,
∴DE=6,AC=8,
∴S=
AC•DE=
×8×6=24.
∵分别以A、C为圆心,以大于
1 |
2 |
∴直线DE是线段AC的垂直平分线,
∴AC⊥DE,即∠AOD=∠COE=90°;
且AD=CD、AO=CO,
又∵CE∥AB,
∴∠1=∠2,
在△AOD和△COE中
|
∴△AOD≌△COE,
∴OD=OE,
∵A0=CO,DO=EO,
∴四边形ADCE是平行四边形,
又∵AC⊥DE,
∴四边形ADCE是菱形;
(2)当∠ACB=90°时,
OD∥BC,
即有△ADO∽△ABC,
∴
OD |
BC |
AO |
AC |
1 |
2 |
又∵BC=6,
∴OD=3,
又∵△ADC的周长为18,
∴AD+AO=9,
即AD=9-AO,
∴OD=
AD2−AO2 |
可得AO=4,
∴DE=6,AC=8,
∴S=
1 |
2 |
1 |
2 |
看了(2012•河源)如图,已知△...的网友还看了以下:
(2014•陕西)已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0,3)两点,将这条抛 2020-06-14 …
练习:1.右图一中,P为直线m外一点,A,B,C为m上不同的三点且PB⊥m,那麼()(A)PA,P 2020-06-17 …
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任 2020-06-18 …
已知如图,在△ABC中,∠C=90°,AC=4,BC=5,AB的中点为点M.(1)以点C为圆心,4 2020-07-21 …
如图1,点A,B的坐标分别为A(0,3),B(0,-3),点C(m,0)为x轴正半轴上一点.(1) 2020-07-21 …
直线l:(m+1)x+2y-4m-4=0(m∈R)恒过定点C,圆C是以点C为圆心,以4为半径的圆. 2020-07-26 …
在平面直角坐标系中,已知点A(-2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m, 2020-07-30 …
在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C为第一象限内一点,且AC 2020-07-30 …
在平面直角坐标系中,已知点A(-2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则 2021-01-12 …
在平面直角坐标系中,已知点A(-2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则 2021-01-12 …