早教吧作业答案频道 -->其他-->
(2014•宿迁模拟)定义:min{a1,a2,a3,…,an}表示a1,a2,a3,…,an中的最小值.若定义f(x)=min{x,5-x,x2-2x-1},对于任意的n∈N*,均有f(1)+f(2)+…+f(2n-1)+f(2n)≤kf(n)成立,则
题目详情
(2014•宿迁模拟)定义:min{a1,a2,a3,…,an}表示a1,a2,a3,…,an中的最小值.若定义f(x)=min{x,5-x,x2-2x-1},对于任意的n∈N*,均有f(1)+f(2)+…+f(2n-1)+f(2n)≤kf(n)成立,则常数k的取值范围是
[−
,0]
1 |
2 |
[−
,0]
.1 |
2 |
▼优质解答
答案和解析
∵f(x)=min{x,5-x,x2-2x-1},
∴当n=1时,f(1)=-2,f(2)=-1;
∴f(1)+f(2)≤kf(1),即-3≤-2k,
解得:k≤
;
当n=2时,f(3)=min{3,5-3,32-2×3-1}=2,f(4)=1,
∴f(1)+f(2)+f(3)+f(4)≤kf(2),即-2-1+2+1≤k×(-1),
解得:k≤0;
当n=3时,f(5)=0,f(6)=-1,f(1)+f(2)+…+f(5)+f(6)=-1≤kf(3)=2k,
解得:k≥-
;
同理可得,当n=4时,f(7)=-2,f(8)=-3,依题意,可解得k≥-6;
当n=5时,f(9)=-4,f(10)=-5,同理解得k∈R;
当n=6时,f(11)=-6,f(12)=-7,依题意得k≤15;
…
∵对于任意的n∈N*,均有f(1)+f(2)+…+f(2n-1)+f(2n)≤kf(n)成立,
∴常数k的取值范围是[-
,0].
故答案为:[-
,0].
∴当n=1时,f(1)=-2,f(2)=-1;
∴f(1)+f(2)≤kf(1),即-3≤-2k,
解得:k≤
3 |
2 |
当n=2时,f(3)=min{3,5-3,32-2×3-1}=2,f(4)=1,
∴f(1)+f(2)+f(3)+f(4)≤kf(2),即-2-1+2+1≤k×(-1),
解得:k≤0;
当n=3时,f(5)=0,f(6)=-1,f(1)+f(2)+…+f(5)+f(6)=-1≤kf(3)=2k,
解得:k≥-
1 |
2 |
同理可得,当n=4时,f(7)=-2,f(8)=-3,依题意,可解得k≥-6;
当n=5时,f(9)=-4,f(10)=-5,同理解得k∈R;
当n=6时,f(11)=-6,f(12)=-7,依题意得k≤15;
…
∵对于任意的n∈N*,均有f(1)+f(2)+…+f(2n-1)+f(2n)≤kf(n)成立,
∴常数k的取值范围是[-
1 |
2 |
故答案为:[-
1 |
2 |
看了(2014•宿迁模拟)定义:m...的网友还看了以下:
提先谢谢了,越快越好1.求下列函数的值:(1)已知f(x)=|x-2|分之x+1,求f(0),f( 2020-04-27 …
周期函数问题f(x)=-f(x+1)=f((x+1)+1)=f(x+2)“f(x)=-f(x+1) 2020-05-14 …
有一个高为1.1米的正方体水池刚好能装满28桶水,已知水桶是一个圆柱体,...有一个高为1.1米的 2020-05-20 …
如题函数f(x)对任意实数x满足条件f(x+1)=1/f(x)若f(1)=-5,则f[f(5)]= 2020-06-06 …
一、我们知道1/1×2=1/1-1/2=1/2,1/2×3=1/2-1/3=1/6验证:1/3×4 2020-07-17 …
一位同学发现:o×1×2×3+1=1=1^21×2×3×4+1=25=5^22×3×4×5+1=1 2020-07-17 …
直角三角形1:1:根号2请问各路高手:直角三角形三个角分别为30°60°90°我想问的是:1:1: 2020-07-22 …
寻找规律解数学题1/1*2=1-1/22/2*3=1/2-1/31/3*4=1/3-1/4……计算 2020-07-22 …
由下列各式:1>1/2,1+1/2+1/3>1有下列各式:1>1/2;1+1/2+1/3>1;1+1 2020-10-30 …
计算一道数学题,(1+1/2)×(1+1/3)×(1+1/4)×(1+1/5)×(1+1/6)×(1 2020-11-30 …