早教吧作业答案频道 -->数学-->
数字信号处理卷积问题R4(n)卷积(n+1)R5(n)
题目详情
数字信号处理卷积问题
R4(n)卷积(n+1)R5(n)
R4(n)卷积(n+1)R5(n)
▼优质解答
答案和解析
R4(n)={1,1,1,1},0≤n≤3,(n+1)R5(n)={1,2,3,4,5},0≤n≤4
y(n)=sum(R4(k)*(n-k+1)*R5(n-k)),0≤k≤3,n≥k,n-k≤4
y(0)=R4(0)*(0-0+1)*R5(0-0)=1*1=1
y(1)=R4(0)*(1-0+1)*R5(1-0)+R4(1)*(1-1+1)*R5(1-1)=1*2+1*1=3
y(2)=R4(0)*(2-0+1)*R5(2-0)+R4(1)*(2-1+1)*R5(2-1)+R4(2)*(2-2+1)*R5(2-2)=1*3+1*2+1*1=6
y(3)=R4(0)*(3-0+1)*R5(3-0)+R4(1)*(3-1+1)*R5(3-1)+R4(2)*(3-2+1)*R5(3-2)+R4(3)*(3-3+1)*R5(3-3)=1*4+1*3+1*2+1*1=10
y(4)=R4(0)*(4-0+1)*R5(4-0)+R4(1)*(4-1+1)*R5(4-1)+R4(2)*(4-2+1)*R5(4-2)+R4(3)*(4-3+1)*R5(4-3)=1*5+1*4+1*3+1*3=14
y(5)= R4(1)*(5-1+1)*R5(5-1)+R4(2)*(5-2+1)*R5(5-2)+R4(3)*(5-3+1)*R5(5-3)= 1*5+1*4+1*3=12
y(6)= R4(2)*(6-2+1)*R5(6-2)+R4(3)*(6-3+1)*R5(6-3)= 1*5+1*4=9
y(7)= R4(3)*(7-3+1)*R5(7-3)= 1*5=5
y(n)=sum(R4(k)*(n-k+1)*R5(n-k)),0≤k≤3,n≥k,n-k≤4
y(0)=R4(0)*(0-0+1)*R5(0-0)=1*1=1
y(1)=R4(0)*(1-0+1)*R5(1-0)+R4(1)*(1-1+1)*R5(1-1)=1*2+1*1=3
y(2)=R4(0)*(2-0+1)*R5(2-0)+R4(1)*(2-1+1)*R5(2-1)+R4(2)*(2-2+1)*R5(2-2)=1*3+1*2+1*1=6
y(3)=R4(0)*(3-0+1)*R5(3-0)+R4(1)*(3-1+1)*R5(3-1)+R4(2)*(3-2+1)*R5(3-2)+R4(3)*(3-3+1)*R5(3-3)=1*4+1*3+1*2+1*1=10
y(4)=R4(0)*(4-0+1)*R5(4-0)+R4(1)*(4-1+1)*R5(4-1)+R4(2)*(4-2+1)*R5(4-2)+R4(3)*(4-3+1)*R5(4-3)=1*5+1*4+1*3+1*3=14
y(5)= R4(1)*(5-1+1)*R5(5-1)+R4(2)*(5-2+1)*R5(5-2)+R4(3)*(5-3+1)*R5(5-3)= 1*5+1*4+1*3=12
y(6)= R4(2)*(6-2+1)*R5(6-2)+R4(3)*(6-3+1)*R5(6-3)= 1*5+1*4=9
y(7)= R4(3)*(7-3+1)*R5(7-3)= 1*5=5
看了数字信号处理卷积问题R4(n)...的网友还看了以下:
有关数列的几个问题.1、等差数列{An}中,(1)Sn=m,Sm=n,求S(m+n)(括号里为下标 2020-06-06 …
寻求MATLAB高手,用离散傅里叶变换来求解函数x(n)=R5(n),求N分别取10和20时的X( 2020-07-11 …
设x=根号下(n+1)-根号n/根号下(n+1)+根号n,y=根号下(n+1)+根号n/根号下(n 2020-07-24 …
我想问n+根号下(3*n的平方-n的3次方)的极限是多少答案是3分之一 2020-07-31 …
不等式的问题m>n>0根号下(m+n)-根号下(m)与根号下m-根号下m-n的大小 2020-08-01 …
已知:m、n都是整数(m>n),且根号m+根号n=根号50,求m、n的值如果式子根号a+根号b=根 2020-08-02 …
若x=根号n+1-根号n/根号n+1+根号n,y=根号n+1+根号n/根号n+1-根号n且10x^2 2020-11-03 …
n个座位依次从一号编到n号,将1至n号的n个号码分给n个人,每人一个号码,这n个人随意地坐到座位上, 2020-12-06 …
一个数学分析求极限的题目,问n趋向于正无穷时,n/(n次根号下n)的极限是什么?说错了,应该是n/( 2020-12-15 …
已知数列{an}通项公式是an=1/根号n+根号n+1,前n项和为10.则项数n为?Sn=(根号2- 2021-02-09 …