早教吧作业答案频道 -->数学-->
一道关於圆的证明题如图,AM是三角形ABC外接圆的直径,三角形ABC的高AD的延长线交圆于N,求证:BN=CM图发不到.
题目详情
一道关於圆的证明题
如图,AM是三角形ABC外接圆的直径,三角形ABC的高AD的延长线交圆于N,求证:BN=CM
图发不到.
如图,AM是三角形ABC外接圆的直径,三角形ABC的高AD的延长线交圆于N,求证:BN=CM
图发不到.
▼优质解答
答案和解析
AM是直径,所以∠MAC+∠AMC=90°
AD⊥BC,所以∠BAN+∠ABC=90°
而∠AMC与∠ABC都为弧AC所对圆周角,即有∠AMC=∠ABC
所以∠MAC=∠BAN
故它们所对的弦也相等,即MC=BN
AD⊥BC,所以∠BAN+∠ABC=90°
而∠AMC与∠ABC都为弧AC所对圆周角,即有∠AMC=∠ABC
所以∠MAC=∠BAN
故它们所对的弦也相等,即MC=BN
看了 一道关於圆的证明题如图,AM...的网友还看了以下:
因式分解预备最近学校训练因式分解,6年级的估计很多初2的也做不出来1.X^5N+X^N+12.16 2020-05-13 …
女性,已确诊肝癌。l天前突然出现剧烈腹痛,血腹,休克。最有可能是并发A.原发性腹膜炎B.急 2020-05-17 …
方程组的基础解系线性无关的个数不是极大无关组的个数吗?而根据极大无关组的定义,那么R(A)=极大无 2020-05-21 …
矩阵主对角线上所有元为|A|其余都为零为什么最后等于|A|E啊不是应该是n个|A|相乘吗? 2020-06-10 …
一道数学题(高手请进啦)easy!两个数列a,a1,a2,……,an,b和a,b1,b2,……,b 2020-07-09 …
对a^nx求导的结果是什么?是(a^nx)*ln(an)还是n*(a^nx)*Ina,且说下为什么 2020-07-21 …
线性代数解空间的维数为什么是n-r(a) 2020-07-21 …
1.如果∠α与∠β是邻补角,且∠α>∠β,则∠β的余角是()2.已知∠α和∠β互为补角,且∠β的一 2020-07-23 …
矩阵A^2=0A≠0也就是A^2α=λ^2α=0从而λ=0,是不是有n重λ=0?也就是n-r(A)个 2020-11-19 …
已知函数f(x)、g(x)x属于R,设f(x)的绝对值加上g(x)绝对值小于a(a>0)的解集是M, 2020-12-08 …