早教吧作业答案频道 -->数学-->
已知函数f(x)=ln(x+a)-x的最大值为0,其中a>0.(1)求a的值;(2)若对任意x∈[0,+∞),有f(x)≥kx2成立,求实数k的最大值;
题目详情
已知函数f(x)=ln(x+a)-x 的最大值为0,其中a>0.
(1)求a的值;
(2)若对任意x∈[0,+∞) ,有f(x)≥kx2 成立,求实数k的最大值;
(1)求a的值;
(2)若对任意x∈[0,+∞) ,有f(x)≥kx2 成立,求实数k的最大值;
▼优质解答
答案和解析
(1)f′(x)=
-1=
,(x+a>0)
令f′(x)=0,可得x=1-a>-a,
令f′(x)>0,-a<x<1-a;f(x)为增函数;
f′(x)<0,x>1-a,f(x)为减函数;
∴x=1-a时,函数取得极大值也是最大值,
∵函数f(x)=ln(x+a)-x 的最大值为0,
∴f(1-a)=a-1=0,得a=1;
(2)当k≥0时,取x=1,有f(1)=ln2-1<0,故k≥0不合题意;
当k<0时,令g(x)=f(x)-kx2,即g(x)=ln(x+1)-x-kx2,x∈(-1,+∞)
求导函数可得g′(x)=
-1-2kx=
,
令g′(x)=0,可得x1=0,x2=-
>-1,
当k≤-
时,x2≤0,g′(x)>0,在(0,+∞)上恒成立,g(x)在[0,+∞)上单调递增,
∴g(x)≥g(0)=0,
∴对任意的x∈[0,+∞),有f(x)≥kx2成立;
故k≤-
时符合题意.
当-
<k<0时,x2>0,g(x)在(0,-
)上g′(x)<0,g(x)为减函数;
g(x)在(-
,+∞)上g′(x)>0,g(x)增函数;
因此存在x0∈(0,-
)使得g(x0)≤g(0)=0,
即f(x0)≤kx02,与题意矛盾;
∴综上:k≤-
时,对任意的x∈[0,+∞),有f(x)≥kx2成立,
∴实数 k的最大值为:-
;
1 |
x+a |
1-x-a |
x+a |
令f′(x)=0,可得x=1-a>-a,
令f′(x)>0,-a<x<1-a;f(x)为增函数;
f′(x)<0,x>1-a,f(x)为减函数;
∴x=1-a时,函数取得极大值也是最大值,
∵函数f(x)=ln(x+a)-x 的最大值为0,
∴f(1-a)=a-1=0,得a=1;
(2)当k≥0时,取x=1,有f(1)=ln2-1<0,故k≥0不合题意;
当k<0时,令g(x)=f(x)-kx2,即g(x)=ln(x+1)-x-kx2,x∈(-1,+∞)
求导函数可得g′(x)=
1 |
x+1 |
-x[2kx+(2k+1)] |
x+1 |
令g′(x)=0,可得x1=0,x2=-
2k+1 |
2k |
当k≤-
1 |
2 |
∴g(x)≥g(0)=0,
∴对任意的x∈[0,+∞),有f(x)≥kx2成立;
故k≤-
1 |
2 |
当-
1 |
2 |
2k+1 |
2k |
g(x)在(-
2k+1 |
2k |
因此存在x0∈(0,-
2k+1 |
2k |
即f(x0)≤kx02,与题意矛盾;
∴综上:k≤-
1 |
2 |
∴实数 k的最大值为:-
1 |
2 |
看了已知函数f(x)=ln(x+a...的网友还看了以下:
冥函数过(2,√2)确定的值,求满足f(2-a)大于f(a-2)的实数a的取值范围 2020-05-13 …
帮偶做道关于奇函数的数学题.已知函数f(x)为奇函数,切在定义域(-2,2)上是增函数,如果f(2 2020-05-22 …
f(x)是定义在(-1,1)上的减函数,若f(2-a)-f(3-a)>0,求a的取值范围 2020-06-07 …
函数y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,若f(a)≤f(2-a),则实数a的取 2020-06-27 …
函数y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,若f(a)≤f(2-a),则实数a的取 2020-06-27 …
求大家帮忙解决啊数学题很急函数f(x)=2^x-2/x-a的一个零点在区间(1,2)内,则实数a的 2020-07-31 …
f(x)是定义在(-11)上的奇函数,且单调递减,若f(2-a)+f(4-a^2)0;-f(-x) 2020-08-01 …
几道数学题```高手进进```1.求函数值域y=1-sinx/2+cosx2.a>0x属于[0,1] 2020-11-15 …
如果函数y=f(x)的图象关于x=a和x=b都对称,证明这个函数满足f[2(a-b)+x]=f(x) 2020-11-19 …
奇函数f(x)在区间[0,)上是减函数已知奇函数f(x)在区间[0,+∞)上是减函数,且f(2-a) 2020-12-08 …