早教吧作业答案频道 -->数学-->
如图,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB边上的任意一点,过点D作DE∥BC,交AC于点E。设△ADE的高AF为x(0<x<6),以DE为折线将△ADE翻折,所得的△A′DE与梯形DBCE重叠部
题目详情
如图,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB边上的任意一点,过点D作DE∥BC,交AC于点E。设△ADE的高AF为x(0<x<6),以DE为折线将△ADE翻折,所得的△A′DE与梯形DBCE重叠部分的面积记为y,(点A关于DE的对称点A′落在AH所在的直线上)。 |
|
(1)分别求出当0<x≤3与3<x<6时,y与x的函数关系式; (2)当x取何值时,y的值最大?最大值是多少? |
▼优质解答
答案和解析
(1)①当0<x≤3时,由折叠得到的△A′ED落在△ABC内部如图1,重叠部分为△A′ED ∵DE∥BC ∴∠ADE=∠B,∠AED=∠C∴△ADE∽△ABC∴ , ∴ ,即DE= x 又∵FA′=FA=x∴y= DE·A′F= × x·x ∴y= x 2 (0...
看了如图,在锐角△ABC中,BC=...的网友还看了以下:
已知,,圆,一动圆在轴右侧与轴相切,同时与圆相外切,此动圆的圆心轨迹为曲线C,曲线E是以,为焦点的 2020-05-15 …
一道圆锥曲线,已知曲线C的方程为y^2=4x(x>0),曲线E是以F1(-1,0)、F(1,0)为 2020-05-15 …
已知曲线C的方程为y2=4x(x>0),曲线E是以F1(-1,0)、F2(1,0)为焦点的椭圆,点 2020-05-15 …
已知定点F1(−2,0),F2(2,0),动点P满足条件:|PF2|−|PF1|=2,点P的轨迹是 2020-07-12 …
已知A1A2为圆X*X+y*y=1与X轴的两个交点,p1p2为垂直于X轴的弦,且A1p1与A2p2 2020-07-13 …
已知定点A(-2,0),动点B是圆F:(x-2)2+y2=64(F为圆心)上一点,线段AB的垂直平 2020-07-17 …
(本小题满分12分)(Ⅰ)一动圆与圆相外切,与圆相内切求动圆圆心的轨迹曲线E的方程,并说明它是什么 2020-07-31 …
已知动圆C与圆C1:(x-2)2+y2=1外切.又与直线l:x=-1相切(1)求动圆C的圆心的轨迹 2020-07-31 …
动圆G与圆Q1:X2+Y2+2X=0外切,同时与圆O2:X2+Y2-2X-8=0内切,设动圆圆心G 2020-07-31 …
已知定点F(0,1)和直线l:y=-1,过点F且与直线l相切的动圆圆心为点M,记点M的轨迹为曲线E. 2021-01-11 …