早教吧作业答案频道 -->数学-->
已知数列{an},a1=1,a2=2,且有2a(n+2)=a(n-1)+ann属于正整数(1)令bn=a(n+1)-an,求证数列{bn}是等差数列(2)求an的通项公式(3)求an的前n项和Sn
题目详情
已知数列{an},a1=1,a2=2,且有2a(n+2)=a(n-1)+an
n属于正整数(1)令bn=a(n+1)-an,求证数列{bn}是等差数列(2)求an的通项公式(3)求an的前n项和Sn
n属于正整数(1)令bn=a(n+1)-an,求证数列{bn}是等差数列(2)求an的通项公式(3)求an的前n项和Sn
▼优质解答
答案和解析
2a(n+2)=a(n+1)+a(n),
2a(n+2)-2a(n+1)=a(n)-a(n+1),
a(n+2)-a(n+1)=(-1/2)[a(n+1)-a(n)],
{b(n)=a(n+1)-a(n)}是首项为a(2)-a(1)=1,公比为(-1/2)的等比数列.
a(n+1)-a(n)=(-1/2)^(n-1),
(-2)^na(n+1) - (-2)^na(n) = -2,
c(n) = (-2)^(n-1)a(n),
c(n+1) = (-2)^na(n+1) = (-2)(-2)^(n-1)a(n)-2= -2c(n) - 2
c(n+1) + 2/3 = -2c(n) - 2 + 2/3 = -2c(n) - 4/3 = (-2)[c(n) + 2/3],
{c(n)+2/3}是首项为c(1)+2/3=a(1)+2/3=5/3,公比为(-2)的等比数列.
c(n)+2/3=(5/3)(-2)^(n-1)=(-2)^(n-1)a(n) + 2/3,
(-2)^(n-1)a(n) = (5/3)(-2)^(n-1) - 2/3,
a(n) = 5/3 - (2/3)(-1/2)^(n-1)
s(n) = 5n/3 - (2/3)[1-(-1/2)^n]/[1-(-1/2)]
=5n/3 - (2/3)[1-(-1/2)^n]/(3/2)
=5n/3 - (4/9)[1-(-1/2)^n]
2a(n+2)-2a(n+1)=a(n)-a(n+1),
a(n+2)-a(n+1)=(-1/2)[a(n+1)-a(n)],
{b(n)=a(n+1)-a(n)}是首项为a(2)-a(1)=1,公比为(-1/2)的等比数列.
a(n+1)-a(n)=(-1/2)^(n-1),
(-2)^na(n+1) - (-2)^na(n) = -2,
c(n) = (-2)^(n-1)a(n),
c(n+1) = (-2)^na(n+1) = (-2)(-2)^(n-1)a(n)-2= -2c(n) - 2
c(n+1) + 2/3 = -2c(n) - 2 + 2/3 = -2c(n) - 4/3 = (-2)[c(n) + 2/3],
{c(n)+2/3}是首项为c(1)+2/3=a(1)+2/3=5/3,公比为(-2)的等比数列.
c(n)+2/3=(5/3)(-2)^(n-1)=(-2)^(n-1)a(n) + 2/3,
(-2)^(n-1)a(n) = (5/3)(-2)^(n-1) - 2/3,
a(n) = 5/3 - (2/3)(-1/2)^(n-1)
s(n) = 5n/3 - (2/3)[1-(-1/2)^n]/[1-(-1/2)]
=5n/3 - (2/3)[1-(-1/2)^n]/(3/2)
=5n/3 - (4/9)[1-(-1/2)^n]
看了已知数列{an},a1=1,a...的网友还看了以下:
已知数列{An}满足A(n+1)=an+2*(3^n)+1,a1=3,求{An}原式得:An=A( 2020-05-13 …
已知公差不为0的等差数列{an}的首项为a(a属于R),且1/a1,1/a2,1/a3成等比数列. 2020-05-13 …
二项式定理(1+x)+(1+x)^2+……+(1+x)^n=a0+a1+a2+……an若a1+a2 2020-05-17 …
an={(n+2)/n(n+1)}/2的(n-2)次方,求an的前n项和求2×4×6×…×2n/1 2020-05-17 …
在等比数列{An}中,已知a1+a2+.+an=2^n-1,求a1^2+a2^2+a3^2+……a 2020-05-17 …
数列错位相减叠加叠成a1=1an=a倍的n-1+2的n-1次方求通项ana1=1an=n/n+1* 2020-06-03 …
高数.设方程a0x^n+a1x^(n-1)+...+a(n-1)x=0有一正根x0,证明方程a高数 2020-06-22 …
设A为n阶方阵,且秩R(A)=n-1,a1,a2是非齐次方程组AX=b的两个不同的解向量,则AX= 2020-06-30 …
数列a1=-1,an+1=2an+4*{3}^{n-1}a1=-1,an+1=2an+4*{3}^ 2020-07-09 …
已知数列{an}的各项均为正数,且满足a1^2+a2^2+a3^2+…+an^2=2^n(n∈N) 2020-07-20 …