早教吧作业答案频道 -->数学-->
己知矩形ABCD,P为矩形所在平面内的任意一点,求证:PA2+PC2=PB2+PD2.(提示:应分P在矩形内、P在矩形上、P在矩形外,三种情形加以讨论.)
题目详情
己知矩形ABCD,P为矩形所在平面内的任意一点,求证:PA2+PC2=PB2+PD2.(提示:应分P在矩形内、P在矩形上、P在矩形外,三种情形加以讨论.)
▼优质解答
答案和解析
证明:①如图1,P在矩形的边上,
在Rt△ABP中,由勾股定理,得PA2-PB2=AB2,
同理可得PD2-PC2=CD2,
由矩形的性质可得AB=CD,
∴PA2-PB2=PD2-PC2,
∴PA2+PC2=PB2+PD2.
②P在矩形内,如图2,过点P作AD的垂线,交AD于点E,交BC于点F,
则四边形ABFE和CDEF为矩形,
∴AE=BF,DE=CF,
由勾股定理得:
则AP2=AE2+PE2,PC2=PF2+CF2,
BP2=BF2+PF2,PD2=DE2+PE2,
∴PA2+PC2=AE2+PE2+PF2+CF2,
PB2+PD2=BF2+PF2+DE2+PE2,
∴PA2+PC2=PB2+PD2.
③P在矩形外,如图3,过P作PF⊥AB于F,交CD于E,
则PE⊥CD,
∴四边形AFED与四边形BCEF是矩形,
∴BF=CE,AF=DE,
由勾股定理得:
则AP2=AF2+PF2,PC2=PE2+CE2,
BP2=BF2+PF2,PD2=DE2+PE2,
∴PA2+PC2=AF2+PF2+PE2+CE2,
PB2+PD2=BF2+PF2+DE2+PE2,
∴PA2+PC2=PB2+PD2.
在Rt△ABP中,由勾股定理,得PA2-PB2=AB2,
同理可得PD2-PC2=CD2,
由矩形的性质可得AB=CD,
∴PA2-PB2=PD2-PC2,
∴PA2+PC2=PB2+PD2.
②P在矩形内,如图2,过点P作AD的垂线,交AD于点E,交BC于点F,
则四边形ABFE和CDEF为矩形,
∴AE=BF,DE=CF,
由勾股定理得:
则AP2=AE2+PE2,PC2=PF2+CF2,
BP2=BF2+PF2,PD2=DE2+PE2,
∴PA2+PC2=AE2+PE2+PF2+CF2,
PB2+PD2=BF2+PF2+DE2+PE2,
∴PA2+PC2=PB2+PD2.
③P在矩形外,如图3,过P作PF⊥AB于F,交CD于E,
则PE⊥CD,
∴四边形AFED与四边形BCEF是矩形,
∴BF=CE,AF=DE,
由勾股定理得:
则AP2=AF2+PF2,PC2=PE2+CE2,
BP2=BF2+PF2,PD2=DE2+PE2,
∴PA2+PC2=AF2+PF2+PE2+CE2,
PB2+PD2=BF2+PF2+DE2+PE2,
∴PA2+PC2=PB2+PD2.
看了己知矩形ABCD,P为矩形所在...的网友还看了以下:
设n阶矩阵A对称正定,n阶矩阵B为对称矩阵,证明存在合同变换矩阵P,使得P'AP与P'BP均为对角 2020-05-15 …
点P是矩形ABCD的边AD上的一个动点,矩形的两条边长AB、BC分别为8和15,求点P到矩形的两条 2020-05-20 …
设矩阵A=(0100,1000,00y1,0012)有一个特征值是3(1).求y的值;(2)求正交 2020-06-14 …
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵P=E0−αTA*|A|,Q=AααTb 2020-06-30 …
证明:n级实矩阵A一定可以分解为A=TDP,其中T为正交矩阵,D为对角矩阵,P为可逆矩阵怎么用相抵 2020-07-18 …
1/1+1/2+1/3+1/4+……+1/(p-1)=R/Q,且p为奇质数,求证R为p的倍数另…… 2020-08-02 …
如何证明分块矩阵是可逆的n阶矩阵p=(AB/0C),A,C为可逆矩阵,证明p可逆,并求可逆矩阵 2020-11-03 …
1、设P是n阶可逆矩阵,如果B=B=P-1AP,证明:Bm=p-1AmP,这里m为任意正整数,为P的 2020-11-17 …
7、有一电偶极矩为P=qL的电偶极子,现以负电荷为中心,画一半径为L/2的球面,则电场对此球面产生的 2020-11-26 …
设AB为两个n阶正定矩阵,AB=BA,证明AB也是正定矩阵.为何要证明AB为对称矩阵,只证明AB可表 2021-01-01 …