早教吧作业答案频道 -->数学-->
如图,四边形ABCD中,AD=BC,AB=CD,E,F分别是AB,CD上的点,且∠DAF=∠BCE,(1)求证:AE=CF;(2)若将此题中的条件改为:“E,F分别是AB,CD延长线上的点”,其余条件不变,此时,∠ABC=60°
题目详情
如图,四边形ABCD中,AD=BC,AB=CD,E,F分别是AB,CD上的点,且∠DAF=∠BCE,
(1)求证:AE=CF;
(2)若将此题中的条件改为:“E,F分别是AB,CD延长线上的点”,其余条件不变,此时,∠ABC=60°,∠BEC=40°,作∠ABC的平分线BN交AF于M,交AD于N,求∠AMN的度数(要求:画示意图,不写画法,写推理过程)
(1)求证:AE=CF;
(2)若将此题中的条件改为:“E,F分别是AB,CD延长线上的点”,其余条件不变,此时,∠ABC=60°,∠BEC=40°,作∠ABC的平分线BN交AF于M,交AD于N,求∠AMN的度数(要求:画示意图,不写画法,写推理过程)
▼优质解答
答案和解析
(1)∵AD=BC,AB=CD,
∴四边形ABCD是平行四边形,
∴∠D=∠B,
∵∠DAF=∠BCE,
∴△ADF≌△CBE,
∴BE=DF,
∴AE=CF;
(2)∵∠ABM=∠CBM=
∠ABC=30°,
又∵AD∥BC
∴∠MND=∠CBM=30°
∵∠ABC=∠E+∠BCE,
∴∠BCE=∠ABC-∠E=60°-40°=20°
∴∠FAD=∠BCE=20°
又∵∠MND=∠FAD+∠AMN
∴∠AMN=∠MND-∠FAD=30°-20°=10°.
∴四边形ABCD是平行四边形,
∴∠D=∠B,
∵∠DAF=∠BCE,
∴△ADF≌△CBE,
∴BE=DF,
∴AE=CF;
(2)∵∠ABM=∠CBM=
1 |
2 |
又∵AD∥BC
∴∠MND=∠CBM=30°
∵∠ABC=∠E+∠BCE,
∴∠BCE=∠ABC-∠E=60°-40°=20°
∴∠FAD=∠BCE=20°
又∵∠MND=∠FAD+∠AMN
∴∠AMN=∠MND-∠FAD=30°-20°=10°.
看了如图,四边形ABCD中,AD=...的网友还看了以下:
如图,在Rt△ABC中,∠B=90°,BC=53,∠C=30°.点D从点C出发沿CA方向以每秒2个 2020-07-17 …
在△ABC中,AB=AC,AD,CE分别平分∠BAC和∠ACB,且AD与CE交于点M.点N在射线A 2020-07-21 …
已知:直线y=kx+6与x轴y轴分别交于点E,F,点E的坐标为(-8,0),在x轴上有一点A的坐标 2020-07-25 …
高数间断点问题设f(x)在R上连续,且f(x)不等于0,g(x)在R上有定义,且有间断点,则下列陈 2020-07-30 …
设f(x)有二阶连续导数,且f'(2)=2,limf''(x)/|x-2|=-2(x-->2)则一 2020-07-31 …
已知抛物线y²=2px﹙p>0﹚的焦点为F,点p是抛物线上的一点,且抛物线上的一点,且其纵坐标为4 2020-08-01 …
已知点A是圆F1:(x+3)2+y2=16上任意一点,点F2与点F1关于原点对称.线段AF2的中垂 2020-08-01 …
如图,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,点D从点C出发沿CA方向以每秒4个 2020-08-03 …
若f(x)=ax^2+bx+c有顶点,且顶点处横纵坐标的比值是1:1.假设函数有两个零点,他们的距离 2020-11-18 …
已知线段AC⊥BC,AC=BC,E为BC中点,D为AC上一点,且AD/AC=1/4已知线段AC⊥BC 2020-11-27 …