早教吧作业答案频道 -->数学-->
设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求COV(X,Y),Pxy.
题目详情
设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求COV(X,Y),Pxy.
▼优质解答
答案和解析
cov(X,Y)= -1/36,ρXY= -1/2,下面是过程.
(1)在三角形内,因为密度均匀,所以概率密度函数p(X,Y)=1/该三角形面积=1/(1/2)=2.
(2)计算E(X),E(X^2),E(Y),E(Y^2),D(X)和D(Y).
E(X)=积分X(0到1) 积分Y(0到1-x) x*p(x,y) dydx=积分X(0到1) x(1-x)*2 dx=(x^2-2/3*x^3)|(0,1)=1/3.
E(X^2)=积分X(0到1) 积分Y(0到1-x) x^2*p(x,y) dydx=积分X(0到1) x^2*(1-x)*2 dx=(2/3*x^3-1/2*x^4)|(0,1)=1/6.
因为X,Y对称,所以E(Y)=1/3,E(Y^2)=1/6.
所以D(X)=E(X^2)-E(X)*E(X)=1/6-1/3*1/3=1/18,同理D(Y)=1/18.
(3)E(XY)=积分X(0到1) 积分Y(0到1-x) xy*p(x,y)dydx=积分X(0到1) x(1-x)^2 dx=(1/2*x^2-2/3*x^3 1/4*x^4)|(0,1)=1/12.
(4)所以,根据定义:
COV(X,Y)=E(XY)-E(X)*E(Y)=1/12-1/3*1/3= -1/36.
ρXY=COV(X,Y)/(根号D(X)*根号D(Y))=-1/36/(1/18)= -1/2.
(1)在三角形内,因为密度均匀,所以概率密度函数p(X,Y)=1/该三角形面积=1/(1/2)=2.
(2)计算E(X),E(X^2),E(Y),E(Y^2),D(X)和D(Y).
E(X)=积分X(0到1) 积分Y(0到1-x) x*p(x,y) dydx=积分X(0到1) x(1-x)*2 dx=(x^2-2/3*x^3)|(0,1)=1/3.
E(X^2)=积分X(0到1) 积分Y(0到1-x) x^2*p(x,y) dydx=积分X(0到1) x^2*(1-x)*2 dx=(2/3*x^3-1/2*x^4)|(0,1)=1/6.
因为X,Y对称,所以E(Y)=1/3,E(Y^2)=1/6.
所以D(X)=E(X^2)-E(X)*E(X)=1/6-1/3*1/3=1/18,同理D(Y)=1/18.
(3)E(XY)=积分X(0到1) 积分Y(0到1-x) xy*p(x,y)dydx=积分X(0到1) x(1-x)^2 dx=(1/2*x^2-2/3*x^3 1/4*x^4)|(0,1)=1/12.
(4)所以,根据定义:
COV(X,Y)=E(XY)-E(X)*E(Y)=1/12-1/3*1/3= -1/36.
ρXY=COV(X,Y)/(根号D(X)*根号D(Y))=-1/36/(1/18)= -1/2.
看了设二维随机变量(X,Y)在以(...的网友还看了以下:
已知直线7x+7y-28=0和x-y=0的交点为A.(1)求A的坐标(2)若l经过点A,且坐标原点 2020-05-16 …
已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O 2020-05-16 …
设曲线y=ax^2(x>=0,常数a>0)与曲线y=1-x^2交于点A,过坐标原点O和点A的直线设 2020-06-14 …
一道关于空间曲线的问题设函数f(x,y)在点(0,0)附近有定义,且fx'(0,0)=3,fy'( 2020-06-15 …
f(x)=|x(2-x)|,点(0.0)是不是其拐点? 2020-06-18 …
已知f(x+2)=f(x),且f(x)={x,-1≮x≮o-xˆ2,0﹤x≮1求f(5)的值 2020-07-09 …
原题是这样的.设f(x)定义在R,是R上的连续函数且对任意x,y属于R都满足f((x+y)/2)= 2020-07-10 …
已知圆O的直径长为关于x的方程x^2+2(k-2)x+k=0的最大整数根(k为整数)快进来啊已知圆 2020-07-31 …
f(x)在点x=o的某一邻域内具有连续的二阶导数lim(x->0)f(x)/x=0f(x)在点x= 2020-07-31 …
高数问题设函数f(x,y)在点(0,0)的某领域有定义,且fx(o,o)=3,fy(0,0)=-1, 2020-11-01 …