早教吧作业答案频道 -->数学-->
如图在平面直角坐标系中点C在x的正半轴上,点A在y轴正半轴上,且OA=7,OC=18现将点C向上平移7个单位长度再向左平移4个单位长度,得到对应点B.(1)求图1中点B的坐标及四边形ABCO的面积(求B点坐
题目详情
如图在平面直角坐标系中点C在x的正半轴上,点A在y轴正半轴上,且OA=7,OC=18现将点C向上平移7个单位长度再向左平移4个单位长度,得到对应点B.
(1)求图1中点B的坐标及四边形ABCO的面积 (求B点坐标的过程写出来)
向左转|向右转
(2)若点P从点C以2个单位长度/秒的速度沿OC方向移动,同时点Q从点O以每秒1个长度单位的速度沿OA方向移动(如图二)设移动时间为t秒(0<t<7),四边形OPBA与ΔOQB的面积分别记为S四边形OPBA,
SΔOQP.是否在一段时间使 S四边形OPBA/2<SΔOQP,若存在求出t的取值范围,若不存在,试说明理由
向左转|向右转
(3)在(2)的条件下,连接QP交OB于D(如图三),下列结论只有一个是正确的,找出这个结论加以说明.①S四边形OPBA的值不变 ②BD-OD的值不变
向左转|向右转
(1)求图1中点B的坐标及四边形ABCO的面积 (求B点坐标的过程写出来)
向左转|向右转
(2)若点P从点C以2个单位长度/秒的速度沿OC方向移动,同时点Q从点O以每秒1个长度单位的速度沿OA方向移动(如图二)设移动时间为t秒(0<t<7),四边形OPBA与ΔOQB的面积分别记为S四边形OPBA,
SΔOQP.是否在一段时间使 S四边形OPBA/2<SΔOQP,若存在求出t的取值范围,若不存在,试说明理由
向左转|向右转
(3)在(2)的条件下,连接QP交OB于D(如图三),下列结论只有一个是正确的,找出这个结论加以说明.①S四边形OPBA的值不变 ②BD-OD的值不变
向左转|向右转
▼优质解答
答案和解析
1)A点坐标(0,7);C点坐标(18,0)
B点坐标X=18-4=14,Y=7,则B点坐标(14,7);
四边形ABCO为直角梯形,面积=(AB+OC)*OA/2=(14+18)*7/2=112
2)OP=18-2t,OQ=t
四边形OPBA面积=(AB+OP)*OA/2=(14+18-2t)*7/2=112-7t
ΔOQB的面积=OQ*AB/2=t*14/2=7t
ΔOQP的面积=OQ*AP/2=t*(18-2t)/2=9t-t2
求S四边形OPBA/2<SΔOQP,即(112-7t)/2<9t-t2
即112-7t<18t-2t2,2t2-25t+112<0
又因为Δ=b²-4ac=25*25-4*2*112
B点坐标X=18-4=14,Y=7,则B点坐标(14,7);
四边形ABCO为直角梯形,面积=(AB+OC)*OA/2=(14+18)*7/2=112
2)OP=18-2t,OQ=t
四边形OPBA面积=(AB+OP)*OA/2=(14+18-2t)*7/2=112-7t
ΔOQB的面积=OQ*AB/2=t*14/2=7t
ΔOQP的面积=OQ*AP/2=t*(18-2t)/2=9t-t2
求S四边形OPBA/2<SΔOQP,即(112-7t)/2<9t-t2
即112-7t<18t-2t2,2t2-25t+112<0
又因为Δ=b²-4ac=25*25-4*2*112
看了如图在平面直角坐标系中点C在x...的网友还看了以下:
过点(1,-√3)的直线l与y正半轴没有公共点,求直线l的倾斜角取值范围?为什么包括90°,而不包 2020-04-11 …
过点(1,-根号3)的直线l与y轴的正半轴没有公共点,求直线l的倾斜角a的范围 2020-04-11 …
过点P(-1,√3)的直线与y轴的正半轴没有公共点,求直线l的倾斜角范围 2020-04-11 …
过点(1,-√3)的直线l与y正半轴没有公共点,求直线l的倾斜角取值范围?要详细过程. 2020-04-11 …
过点P(-1,-根号3)的直线l与y轴的正半轴没有公共点,求直线了的倾斜角的范围 2020-04-11 …
过抛物线y^2=x上一点A(4,2)作倾斜角互补的两条直线AB、AC,它们交抛物线于B、C两点,求 2020-04-27 …
已知圆c经过P(4,-2)Q(-1,3)两点,且在y轴上截得的线段长为4根号3,半径小于5.若直线 2020-07-22 …
已知圆O:与轴负半轴的交点为A,点P在直线l:上,过点P作圆O的切线,切点为T.(1)若a=8,切 2020-07-31 …
在平面直角坐标系中,以坐标原点为几点,轴的正半轴为极轴建立极坐标系.已知直线上两点的极坐标分别为, 2020-07-31 …
在坐标轴上有一以原点为圆心半径为1的圆,在圆外有一点A(x,y),过A点分别作圆的两条切线交于B、 2020-08-01 …