早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求与圆C:x^2+y^2-x+2y=0关于直线l:x-y+1=0对称的圆的方程2011-02-求与圆C:x^2+y^2-x+2y=0关于直线l:x-y+1=0对称的圆的方程2011-02-24|分享圆C的圆心是(1/2,-1),半径=√5/2设圆心(1/2,-1)关于直线l:x-y+1=0对称的点

题目详情
求与圆C:x^2+y^2-x+2y=0关于直线l:x-y+1=0对称的圆的方程 2011-02-
求与圆C:x^2+y^2-x+2y=0关于直线l:x-y+1=0对称的圆的方程
2011-02-24 | 分享
圆C的圆心是(1/2,-1),半径=√5/2
设圆心(1/2,-1)关于直线l:x-y+1=0对称的点是(x,y)
所以(1/2+x)/2 - (-1+y)/2 +1=0
(y+1)/(x-1/2)=-1
得x=-2,y=3/2
所以圆C:关于直线l对称的圆的方程:(x+2)^2+(y-3/2)^2=5/4 求(1/2+x)/2 - (-1+y)/2 +1=0是怎么来的,感激不尽
▼优质解答
答案和解析
C:x^2+y^2-x+2y=0
C(0.5,-1),r=^2=1.25
C^(a,b)
xL=(a+0.5)/2,yL=(b-1)/2(两对称点的平均值,就是中点的坐标)
L:x-y+1=0
(a+0.5)/2-(b-1)/2+1=0(两对称点的坐标值,在对称线上)
a-b+3.5=0.(1)
k(CC^)=(b+1)/(a-0.5)=-1
a+b+0.5=0.(2)
a=-2,b=1.5
(x+2)^2+(y-1.5)^2=1.25