早教吧 育儿知识 作业答案 考试题库 百科 知识分享

用三种不同方法解题已知变量x1,x2,y1,y2,m,n属于R,且x1^2+y1^2=m,x2^2+y2^2=n(m,n为定值),求x1x2+y1y2的最大值

题目详情
用三种不同方法解题
已知变量x1,x2,y1,y2,m,n属于R,且x1^2+y1^2=m,x2^2+y2^2=n(m,n为定值),求x1x2+y1y2的最大值
▼优质解答
答案和解析
解法1 (分析法)要证(x1x2+y1y2)2≤(x12+y12)(x22+y22)
即证:x12x22+y12y22+2x1y1x2y2≤x12x22+x12y22+y12x22+y12y22
即证:2x1y1x2y2≤x12y22+y12x22
即证:0≤x12y22+y12x22-2x1y1x2y2=(x1y2+y1x2)2
上式明显成立.
故(x1x2+y1y2)2≤(x12+y12)(x22+y22)=mn
解法2 (综合法)
因为x12y22+y12x22≥2x1y1x2y2(重要不等式)
所以(x1x2+y1y2)2
=x12x22+y12y22+2x1y1x2y2
≤x12x22+x12y22+y12x22+y12y22
=(x12+y12)(x22+y22)=mn
解法3 (作差法)
因为(x12+y12)(x22+y22)-(x1x2+y1y2)2
=(x12x22+x12y22+y12x22+y12y22)-(x12x22+y12y22+2x1y1x2y2)
=y12x22+x12y22-2x1y1x2y2
=(y12x22-x12y22)2≥0
所以(x1x2+y1y2)2≤(x12+y12)(x22+y22)=mn