早教吧作业答案频道 -->数学-->
设圆C1:(X+2)^2+(Y-3m-2)^2=4m^2,直线l:y=x+m+2,当m变化且m≠0时,(1)求C1关于l对称的圆C2的方程?(2)当m变化且m≠0时,求证:C2的圆心在同一条定直线上,并求C2所表示的一系列圆的公切线方程
题目详情
设圆C1:(X+2)^2+(Y-3m-2)^2=4m^2,直线l:y=x+m+2,当m变化且m≠0时,(1)求C1关于l对称的圆C2的方程?
(2)当m变化且m≠0时,求证:C2的圆心在同一条定直线上,并求C2所表示的一系列圆的公切线方程
(2)当m变化且m≠0时,求证:C2的圆心在同一条定直线上,并求C2所表示的一系列圆的公切线方程
▼优质解答
答案和解析
C1,圆心(-2,3m+2),
C2的圆心就是此点关于y=x+m+2的对称点
设C2圆心(a,b)
则过两圆心的直线垂直于y=x+m+2,且两圆心的中点在y=x+m+2上
y=x+m+2斜率是1
所以过两圆心的直线斜率是-1
(b-3m-2)/(a+2)=-1
a+b=3m
两圆心的中点在y=x+m+2上
(b+3m+2)/2=(a-2)/2+m+2
a-b=m+2
所以a=2m+1,b=m-1
对称的圆半径不变
所以C2:(x-2m-1)^2+(y-m+1)^2=4m^2
C2的圆心的坐标x=2m+1,y=m-1
m=y+1
x=2(y+1)+1
x-2y-3=0
所以圆心在x-2y-3=0这条直线上
所以C2所表示的一系列圆的公切线应该是和x-2y-3=0平行且直线距离等于半径的直线
所以公切线是x-2y+k=0
圆心(2m+1,m-1)
到直线的距离=|2m+1-2m+2+k|/√(1^2+2^2)=|k|/√5
半径=2|m|
|k|/√5=2|m|
k=±2√5m
所以公切线有两条
x-2y+2√5m=0
x-2y-2√5m=0
C2的圆心就是此点关于y=x+m+2的对称点
设C2圆心(a,b)
则过两圆心的直线垂直于y=x+m+2,且两圆心的中点在y=x+m+2上
y=x+m+2斜率是1
所以过两圆心的直线斜率是-1
(b-3m-2)/(a+2)=-1
a+b=3m
两圆心的中点在y=x+m+2上
(b+3m+2)/2=(a-2)/2+m+2
a-b=m+2
所以a=2m+1,b=m-1
对称的圆半径不变
所以C2:(x-2m-1)^2+(y-m+1)^2=4m^2
C2的圆心的坐标x=2m+1,y=m-1
m=y+1
x=2(y+1)+1
x-2y-3=0
所以圆心在x-2y-3=0这条直线上
所以C2所表示的一系列圆的公切线应该是和x-2y-3=0平行且直线距离等于半径的直线
所以公切线是x-2y+k=0
圆心(2m+1,m-1)
到直线的距离=|2m+1-2m+2+k|/√(1^2+2^2)=|k|/√5
半径=2|m|
|k|/√5=2|m|
k=±2√5m
所以公切线有两条
x-2y+2√5m=0
x-2y-2√5m=0
看了 设圆C1:(X+2)^2+(...的网友还看了以下:
4、圆周率是圆的()与()1.大圆与小圆的直径比是3:2,...4、圆周率是圆的()与()1.大圆 2020-05-14 …
几道关于"圆的方程"的数学题,1.求圆的方程.过点(3,2),圆心在直线y=2x上,与直线y=2x 2020-05-16 …
已知圆O:x^2+y^2=4和圆C:x^2+(y-4)^2=1过圆C的圆心c作动直线m交圆O于A, 2020-05-17 …
已知圆A和圆B的方程分别是(x+2)^2+y^2=25/4,(x-2)^2+y^2=1/4,动圆P 2020-06-09 …
在平面直角坐标系xoy中,已知圆C1:(x+3)2+y2=4和圆C2:(x-4)2+(y-4)2= 2020-07-09 …
已知圆O:x2+y2=4,点P是直线X=4上的动点,若点A(-2,0),B(2,0),直线PA,P 2020-07-30 …
已知圆C:(X-3)^2+(Y-4)^2=4,直线L1过定点A(1.0),若L1与圆C相切,求直线 2020-07-31 …
已知圆x^2+y^2+2x-4y+1=0关于直线2ax-by+2=0(a>0,b>0)对称,则4/ 2020-08-01 …
选修4-4:坐标系与参数方程在极坐标系中,已知直线l的极坐标方程为ρsin(θ+π4)=1+2,圆 2020-08-02 …
已知动直线l:(m+3)x-(m+2)y+m=0,圆C:(x-3)^2+(y-4)^2=9求证:无论 2021-01-12 …