早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知对称轴为x=-32的抛物线y=ax2+bx+6与x轴交于A、B两点,与y轴交于C点,OA=3,D是抛物线上一点,且DC⊥OC.(1)求点D的坐标及抛物线y=ax2+bx+c的表达式;(2)连接OD,直线y=12x+m与OD交于

题目详情
如图,已知对称轴为x=-
3
2
的抛物线y=ax2+bx+6与x轴交于A、B两点,与y轴交于C点,OA=3,D是抛物线上一点,且DC⊥OC.
(1)求点D的坐标及抛物线y=ax2+bx+c的表达式;
(2)连接OD,直线y=
1
2
x+m与OD交于点E,与y轴交于点F,若OE:DE=1:2,求m的值;
(3)若M是直线EF上一动点,在x轴上方是否存在点N,使以O、F、M、N为顶点的四边形是菱形?若存在求出点N的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵抛物线的对称轴为x=-
3
2
,经过点A(3,0),
b
2a
=−
3
2
9a+3b+6=0
,解得
a=−
1
3
b=−1

∴抛物线解析式为y=-
1
3
x2-x+6;

(2)∵y=-
1
3
x2-x+6,
∴x=0时,y=6,即C点坐标为(0,6),
∴当y=6时,-
1
3
x2-x+6=6,
解得x=0或-3,
∴D点坐标为(-3,6),DC=3.
如图,过点E作EG⊥y轴于点G,则EG∥DC,
∴△OEG∽△ODC,
EG
DC
=
OG
OC
=
OE
OD
=
1
3

∴EG=
1
3
DC=1,OG=
1
3
OC=2,
∴E点坐标为(-1,2).
将E点坐标代入y=
1
2
x+m,
得2=-
1
2
+m,
解得m=
作业帮用户 2017-10-14 举报
问题解析
(1)根据抛物线对称轴得到关于a、b的一个方程,再把点A点坐标代入抛物线解析式,然后解方程组求出a、b的值,即可得解;
(2)先求出抛物线y=-
1
3
x2-x+6与y轴交点C的坐标为(0,6),将y=6代入,求出x的值,得到D点坐标及DC=3,再过点E作EG⊥y轴于点G,由EG∥DC,得到△OEG∽△ODC,根据相似三角形对应边成比例得出
EG
DC
=
OG
OC
=
OE
OD
=
1
3
,求出EG,OG的值,得出E点坐标,然后将E点坐标代入y=
1
2
x+m,即可求出m的值;
(3)分两种情况进行讨论:①OF为菱形的边时,延长M1N1交x轴于点G1,则M1N1⊥x轴.设点M1的坐标为(a,
1
2
a+
5
2
),则点N1的坐标为(a,
1
2
a),在Rt△OG1N1中,运用勾股定理得出OG12+G1N12=ON12,列出关于a的方程,解方程即可,同理求出点N2的坐标;②OF为菱形的对角线时,连接M3N3,交OF于点P,根据菱形的性质可知M3N3与OF互相垂直平分,则OP=
1
2
OF=
5
4
,将y=
5
4
代入y=
1
2
x+
5
2
,求出x的值,进而得到点N3的坐标.
名师点评
本题考点:
二次函数综合题.
考点点评:
此题考查了待定系数法求函数的解析式、相似三角形的判定与性质、菱形的性质以及勾股定理.此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.
我是二维码 扫描下载二维码