早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过点A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)当点P与点Q重合时,如图1,写出QE与QF的数量关系,不证明

题目详情
已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过点A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.
(1)当点P与点Q重合时,如图1,写出QE与QF的数量关系,不证明;
(2)当点P在线段AB上且不与点Q重合时,如图2,(1)的结论是否成立?并证明;
(3)当点P在线段BA(或AB)的延长线上时,如图3,此时(1)的结论是否成立?请画出图形并给予证明.作业帮
▼优质解答
答案和解析
作业帮 (1)QE=QF,
理由是:如图1,∵Q为AB中点,
∴AQ=BQ,
∵BF⊥CP,AE⊥CP,
∴∠BFQ=∠AEQ=90°,
在△BFQ和△AEQ中
∠BFQ=∠AEQ
∠BQF=∠AQE
BQ-AQ

∴△BFQ≌△AEQ(AAS),
∴QE=QF,

(2)(1)中的结论仍然成立,
证明:如图2,延长FQ交AE于D,
∵Q为AB中点,
∴AQ=BQ,作业帮
∵BF⊥CP,AE⊥CP,
∴BF∥AE,
∴∠QAD=∠FBQ,
在△FBQ和△DAQ中,
∠FBQ=∠DAQ
BQ=AQ
∠BQF=∠AQD

∴△FBQ≌△DAQ(ASA),
∴QF=QD,
∵AE⊥CP,
∴EQ是Rt△DEF斜边上的中线,
∴QE=QF=QD,
即QE=QF.

(3)(1)中的结论仍然成立,
证明:如图3,
延长EQ、FB交于D,作业帮
∵Q为AB中点,
∴AQ=BQ,
∵BF⊥CP,AE⊥CP,
∴BF∥AE,
∴∠1=∠D,
在△AQE和△BQD中,
∠1=∠D
∠2=∠3
AQ=BQ

∴△AQE≌△BQD(AAS),
∴QE=QD,
∵BF⊥CP,
∴FQ是Rt△DEF斜边DE上的中线,
∴QE=QF.