早教吧作业答案频道 -->数学-->
如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C(1)求抛物线的解析式;(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;(3)在(
题目详情
如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)把 x = 1 y = 0 代入 y=x2+bx-3a 得:1 + b -- 3a = 0
把 x = 0 y = -- 3 代入 y=x2+bx-3a 得:-- 3a = -- 3
∴ b = 3a -- 1 = 3 -- 1 = 2
∴抛物线的解析式为:y = x2 + 2x -- 3
( 把--3a看作 整体,不必专门求a值)
(2)把抛物线的解析式变为:y = (x -- 1)(x + 3)
令(x -- 1)(x + 3)= 0 得抛物线与x轴的另一交点C坐标为:(--3 ,0)
把把抛物线的解析式变为:y =(x + 1)2 -- 4
知 抛物线de对称轴为 x = -- 1,最小值为 -- 4,顶点坐标为:N (--1,-- 4).
∵ C坐标为(--3,0)、B坐标为( 0,--3)
∴ △OBC是等腰直角三角形,且斜边BC=3√2,则BC的平方= 18.
∵ N坐标为(--1,-- 4)、B坐标为( 0,--3),作NH ⊥ y轴于H,
则 △BNH 是等腰直角三角形,且斜边BN=√2,则BN的平方= 2.
设 对称轴 x = -- 1 与 x轴交于点M,则MC=2,MN=4.
在Rt△MCN 中,NC的平方 = MC的平方 + MN的平方
∴ NC 的平方 = 20
又 ∵ BC的平方 + BN的平方 = 18 + 2 = 20
∴ BC的平方 + BN的平方 = NC 的平方
∴ △BCN 是Rt△,且是以点B为直角顶点的直角三角形.
∴满足题意的 点P的位置应在点N处,此时点P的坐标为(-- 1,-- 4)..
(3)在(2)的条件下,在抛物线上存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形,满足题意的点Q坐标为(-- 2,-- 3).
我们知道,两直线 y1 = k1 x + b1 与 y2 = k2 x + b2 平行的时候,k1 = k2.
∵C坐标为(--3,0)、B坐标为( 0,--3)
∴ 易求得 直线BC的解析式为:y = -- x -- 3.
过P(-- 1,-- 4)作 直线BC的平行线并设其解析式为y = -- x + b
求直线BC 与 抛物线 的交点,
需联立方程组y = -- x + b
y = x2 + 2x -- 3
解得:x = -- 2 ,y = -- 3 (另一组解x= --1,y= -- 4 表示P点坐标)
∴满足题意的点Q坐标为(-- 2,-- 3).
注:第三问,题目让求作“直角梯形”,注意从∠CBP = 90° 进行突围!
第三问,满足题意的点Q 只有以上一种情形.
把 x = 0 y = -- 3 代入 y=x2+bx-3a 得:-- 3a = -- 3
∴ b = 3a -- 1 = 3 -- 1 = 2
∴抛物线的解析式为:y = x2 + 2x -- 3
( 把--3a看作 整体,不必专门求a值)
(2)把抛物线的解析式变为:y = (x -- 1)(x + 3)
令(x -- 1)(x + 3)= 0 得抛物线与x轴的另一交点C坐标为:(--3 ,0)
把把抛物线的解析式变为:y =(x + 1)2 -- 4
知 抛物线de对称轴为 x = -- 1,最小值为 -- 4,顶点坐标为:N (--1,-- 4).
∵ C坐标为(--3,0)、B坐标为( 0,--3)
∴ △OBC是等腰直角三角形,且斜边BC=3√2,则BC的平方= 18.
∵ N坐标为(--1,-- 4)、B坐标为( 0,--3),作NH ⊥ y轴于H,
则 △BNH 是等腰直角三角形,且斜边BN=√2,则BN的平方= 2.
设 对称轴 x = -- 1 与 x轴交于点M,则MC=2,MN=4.
在Rt△MCN 中,NC的平方 = MC的平方 + MN的平方
∴ NC 的平方 = 20
又 ∵ BC的平方 + BN的平方 = 18 + 2 = 20
∴ BC的平方 + BN的平方 = NC 的平方
∴ △BCN 是Rt△,且是以点B为直角顶点的直角三角形.
∴满足题意的 点P的位置应在点N处,此时点P的坐标为(-- 1,-- 4)..
(3)在(2)的条件下,在抛物线上存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形,满足题意的点Q坐标为(-- 2,-- 3).
我们知道,两直线 y1 = k1 x + b1 与 y2 = k2 x + b2 平行的时候,k1 = k2.
∵C坐标为(--3,0)、B坐标为( 0,--3)
∴ 易求得 直线BC的解析式为:y = -- x -- 3.
过P(-- 1,-- 4)作 直线BC的平行线并设其解析式为y = -- x + b
求直线BC 与 抛物线 的交点,
需联立方程组y = -- x + b
y = x2 + 2x -- 3
解得:x = -- 2 ,y = -- 3 (另一组解x= --1,y= -- 4 表示P点坐标)
∴满足题意的点Q坐标为(-- 2,-- 3).
注:第三问,题目让求作“直角梯形”,注意从∠CBP = 90° 进行突围!
第三问,满足题意的点Q 只有以上一种情形.
看了 如图,已知抛物线y=x2+b...的网友还看了以下:
一道关于有理数加法的选择题,如果两个数的和是负数,那么( )A.这两个加数都是负数B.两个加数中, 2020-05-16 …
标准状况下5.6L某气态烃的质量为4克,又知该烃中碳与氢的质量比为三比一则该烃的相对分子质量是?分 2020-05-16 …
将一个薄凸透镜与一个薄凹透镜贴合在一起组成复合透镜那么复合透镜焦度A一定为0B一定为正C一定为负D 2020-05-17 …
快能解多少是多少感激不尽1.某冷库的温室为-4°C,一批食品需要在-28°C冷藏,如果每小时降温3 2020-05-17 …
导游员每年的考评分为三种:一是通过年审;二是( );三是不予通过年审。 2020-05-20 …
纸币呈正十字形,票面缺少四分之一的,按原面额的_____兑换。A.全额B.四分之三C.一半 2020-05-27 …
1)解方程(x^3+2)/(x^2-x+1)+(x^3-2)/(x^2+x+1)=2x2)m为何值 2020-06-03 …
立秋分为三候,一候凉风至;二候白露生;三候寒蝉鸣. 2020-06-09 …
一对杂合的黑豚鼠产仔4只,4只鼠仔的表现型为三黑一白,对此最好的解释是()A.3:1符合基因的分离 2020-06-16 …
将12个不同的苹果分为三堆,一堆六个,另外两堆各三个 2020-06-25 …