早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知等差数列{an}中,a1=a,公差d=1,若bn=an^2-a(n-1)^2,试判断数列{bn}是否为等差数列RT那如果是bn=an^2-a(n+1)^2呢?

题目详情
已知等差数列{an}中,a1=a,公差d=1,若bn=an^2-a(n-1)^2,试判断数列{bn}是否为等差数列
RT
那如果是bn=an^2-a(n+1)^2呢?
▼优质解答
答案和解析
{bn}是等差数列
因为,bn=an^2-a(n-1)^2=[an+a(n-1)][an-a(n-1)]=an+a(n-1)
所以,
b(n+1)-bn=a(n+1)+an-an-a(n-1)=a(n+1)-a(n-1)=2d=2(为常数)
所以,
{bn}为等差数列