早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.(1)如果AB=8且CE/CD=1/2,求BN,AM的长.(2)若CE/CD=1/3,则AM/BN的值为____.(3)若CE/CD=1/N,则AM/BN的值为____.

题目详情
如图,将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.
(1)如果AB=8且CE/CD=1/2,求BN,AM的长.
(2)若CE/CD=1/3,则AM/BN的值为____.
(3)若CE/CD=1/N,则AM/BN的值为____.
▼优质解答
答案和解析
1、AB=8,由CE/CD=1/2,∴CE=4,即E是DC中点,
设BN=x,则CN=8-x,由对称性得:NB=NE=x,
在直角△ENC中,由勾股定理得:
4²+﹙8-x﹚²=x²,解得:x=5,
设AD与FE相交于G点,由对称性得:
∠GEN=∠B=90°,FE=AB=8,
∴∠DEG+∠CEN=90°,
∴易得:∠DEG=∠CNE,∴△DEG∽△CNE,
∴DE∶CN=DG∶CE,
∴4∶3=DG∶4,∴DG=16/3,
∴AG=8-16/3=8/3,
∴FG=8-20/3=4/3,
∴由勾股定理得:EG=20/3,
∴设AM=y,则MG=8/3-y,在直角△FMG中,
由勾股定理得:y²+﹙4/3﹚²=﹙8/3-y﹚²,
解得:y=1,即AM=1.
2、由CE/CD=1/3,可以设CE=1,则DC=3,DE=2,
设BN=x,则CN=3-x,NE=x,
在直角△ENC中,由勾股定理得:
﹙3-x﹚²+1²=x²,解得:x=5/3,即BN=5/3,
同理:由相似性得:DG/2=1/3,∴DG=2/3,
∴AG=3-2/3=7/3,
∴GE=2√10/3,∴FG=3-2√10/3,
设AM=y,则MG=7/3-y,
∴y²+﹙3-2√10/3﹚²=﹙7/3-y﹚²,
解得:y=﹙6√10-12﹚/7,
∴AM/BN=﹙6√10-12/7﹚/﹙5/3﹚
=﹙18√10-36/7﹚∶5.
3、设CE=1,则DC=n,∴DE=n-1,
设BN=x,则NC=n-x,NE=x,由勾股定理得:
1²+﹙n-x﹚²=x²,
解得:x=﹙n²+1﹚/﹙2n﹚,
由相似性得:DG=2n/﹙n+1﹚,
∴AG=n-2n/﹙n+1﹚=﹙n²-n﹚/﹙n+1﹚,∴后面方法相同.你自己能完成了.