早教吧作业答案频道 -->数学-->
如图,将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.(1)如果AB=8且CE/CD=1/2,求BN,AM的长.(2)若CE/CD=1/3,则AM/BN的值为____.(3)若CE/CD=1/N,则AM/BN的值为____.
题目详情
如图,将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D重合),压平后得到折痕MN.
(1)如果AB=8且CE/CD=1/2,求BN,AM的长.
(2)若CE/CD=1/3,则AM/BN的值为____.
(3)若CE/CD=1/N,则AM/BN的值为____.
(1)如果AB=8且CE/CD=1/2,求BN,AM的长.
(2)若CE/CD=1/3,则AM/BN的值为____.
(3)若CE/CD=1/N,则AM/BN的值为____.
▼优质解答
答案和解析
1、AB=8,由CE/CD=1/2,∴CE=4,即E是DC中点,
设BN=x,则CN=8-x,由对称性得:NB=NE=x,
在直角△ENC中,由勾股定理得:
4²+﹙8-x﹚²=x²,解得:x=5,
设AD与FE相交于G点,由对称性得:
∠GEN=∠B=90°,FE=AB=8,
∴∠DEG+∠CEN=90°,
∴易得:∠DEG=∠CNE,∴△DEG∽△CNE,
∴DE∶CN=DG∶CE,
∴4∶3=DG∶4,∴DG=16/3,
∴AG=8-16/3=8/3,
∴FG=8-20/3=4/3,
∴由勾股定理得:EG=20/3,
∴设AM=y,则MG=8/3-y,在直角△FMG中,
由勾股定理得:y²+﹙4/3﹚²=﹙8/3-y﹚²,
解得:y=1,即AM=1.
2、由CE/CD=1/3,可以设CE=1,则DC=3,DE=2,
设BN=x,则CN=3-x,NE=x,
在直角△ENC中,由勾股定理得:
﹙3-x﹚²+1²=x²,解得:x=5/3,即BN=5/3,
同理:由相似性得:DG/2=1/3,∴DG=2/3,
∴AG=3-2/3=7/3,
∴GE=2√10/3,∴FG=3-2√10/3,
设AM=y,则MG=7/3-y,
∴y²+﹙3-2√10/3﹚²=﹙7/3-y﹚²,
解得:y=﹙6√10-12﹚/7,
∴AM/BN=﹙6√10-12/7﹚/﹙5/3﹚
=﹙18√10-36/7﹚∶5.
3、设CE=1,则DC=n,∴DE=n-1,
设BN=x,则NC=n-x,NE=x,由勾股定理得:
1²+﹙n-x﹚²=x²,
解得:x=﹙n²+1﹚/﹙2n﹚,
由相似性得:DG=2n/﹙n+1﹚,
∴AG=n-2n/﹙n+1﹚=﹙n²-n﹚/﹙n+1﹚,∴后面方法相同.你自己能完成了.
设BN=x,则CN=8-x,由对称性得:NB=NE=x,
在直角△ENC中,由勾股定理得:
4²+﹙8-x﹚²=x²,解得:x=5,
设AD与FE相交于G点,由对称性得:
∠GEN=∠B=90°,FE=AB=8,
∴∠DEG+∠CEN=90°,
∴易得:∠DEG=∠CNE,∴△DEG∽△CNE,
∴DE∶CN=DG∶CE,
∴4∶3=DG∶4,∴DG=16/3,
∴AG=8-16/3=8/3,
∴FG=8-20/3=4/3,
∴由勾股定理得:EG=20/3,
∴设AM=y,则MG=8/3-y,在直角△FMG中,
由勾股定理得:y²+﹙4/3﹚²=﹙8/3-y﹚²,
解得:y=1,即AM=1.
2、由CE/CD=1/3,可以设CE=1,则DC=3,DE=2,
设BN=x,则CN=3-x,NE=x,
在直角△ENC中,由勾股定理得:
﹙3-x﹚²+1²=x²,解得:x=5/3,即BN=5/3,
同理:由相似性得:DG/2=1/3,∴DG=2/3,
∴AG=3-2/3=7/3,
∴GE=2√10/3,∴FG=3-2√10/3,
设AM=y,则MG=7/3-y,
∴y²+﹙3-2√10/3﹚²=﹙7/3-y﹚²,
解得:y=﹙6√10-12﹚/7,
∴AM/BN=﹙6√10-12/7﹚/﹙5/3﹚
=﹙18√10-36/7﹚∶5.
3、设CE=1,则DC=n,∴DE=n-1,
设BN=x,则NC=n-x,NE=x,由勾股定理得:
1²+﹙n-x﹚²=x²,
解得:x=﹙n²+1﹚/﹙2n﹚,
由相似性得:DG=2n/﹙n+1﹚,
∴AG=n-2n/﹙n+1﹚=﹙n²-n﹚/﹙n+1﹚,∴后面方法相同.你自己能完成了.
看了 如图,将正方形纸片ABCD折...的网友还看了以下:
已知A+3=B-3=C×3=D÷3=E3.A、B、C、D、E均为自然数,且A+B+C+D+E<200 2020-03-31 …
在五边形ABCD中,∠A=∠D=90,∠B:∠C:∠E=2:3:4,求∠B,∠C,∠E的度数在五边 2020-05-13 …
设有随机变量X,已知EX=-1,DX=3,求E[3(X^2-2)] 2020-05-15 …
求∫e∧3√xdx的不定积分 2020-06-10 …
化简三角函数sin12*sin24*sin48*sin96=?函数f(x)=lnx-2/x的零点所 2020-06-13 …
选择元音字母在单词中发音不同的一项.1;A:h(a)nd;B:f(a)ce;C:(a)pple.2 2020-06-17 …
1、a,5,b,c,d,e,3,任意三个相邻数之和相等,那么a=()d=()2、有n个连续自然数的 2020-07-18 …
1、a,5,b,c,d,e,3,任意三个相邻数之和相等,那么a=()d=()2、有n个连续自然数的 2020-07-18 …
已知a+b=c,求a^3+a^2c+b^2c-abc+b^3的值.(x+1)(x+3)(x+4)( 2020-07-19 …
一道数学题一次量身高,A.B.C.D.E,5人的平均身高比C.D.E,3人的平均身高矮4厘米,A.B 2020-11-15 …