早教吧作业答案频道 -->数学-->
在正方形ABCD中,点P从C出发,沿射线CB运动,连接AP,过点P作EP⊥AP,分别交直线CD、AB于点E、F,证明BP=EC+BF初二上学期以上的方法不要用谢谢
题目详情
在正方形ABCD中,点P从C出发,沿射线CB运动,连接AP,过点P作EP⊥AP,分别交直线CD、AB于点E、F,证明BP=EC+BF
初二上学期以上的方法不要用谢谢
初二上学期以上的方法不要用谢谢
▼优质解答
答案和解析
求证BP=EC+BF
证明:
∵ABCD为正方形
∴PC+PB=BC=AB
∵AP⊥EF,CB⊥AB
∵在直角三角形PCE和直角三角形PBF中,∠BPF=∠CPE
∴△PFB∽△PEC
∴PB/PC=BF/CE(相似三角形)
∴PC*BF=PB*CE(等式变形)
∵PA⊥EF,PB⊥AB
∴在直角三角形PAF中,PB是斜边AF上的高
∴PB^2=AB*BF=BC*BF=(PB+PC)*BF=PB*BF+PC*BF=PB*BF+PB*CE(由上式推导)=PB*(BF+CE)
∴BP=EC+BF(等式两边同除PB)
证明:
∵ABCD为正方形
∴PC+PB=BC=AB
∵AP⊥EF,CB⊥AB
∵在直角三角形PCE和直角三角形PBF中,∠BPF=∠CPE
∴△PFB∽△PEC
∴PB/PC=BF/CE(相似三角形)
∴PC*BF=PB*CE(等式变形)
∵PA⊥EF,PB⊥AB
∴在直角三角形PAF中,PB是斜边AF上的高
∴PB^2=AB*BF=BC*BF=(PB+PC)*BF=PB*BF+PC*BF=PB*BF+PB*CE(由上式推导)=PB*(BF+CE)
∴BP=EC+BF(等式两边同除PB)
看了 在正方形ABCD中,点P从C...的网友还看了以下:
已知,如图∠A=∠C,CD丄AB于D,交AE于F,试断定ΔAEB的形状,并说明你的结论的合理性.AD 2020-03-30 …
高数罗尔定理之类的大致就是f(x)在(a,b)上连续可导b>a>0,f(a)=f(b),证明,存在 2020-05-13 …
画线段AB分别以点A,B为圆心,以大于1/2AB的长为半径画弧,两弧相交与点C,连接AC;再以点C 2020-05-21 …
一道数学几何证明题有一个Rt三角形ABC,角A等于60度.角C等于30度.角B等于90度.以AB为 2020-06-03 …
我国长江入海口附近的崇明岛,若干年后可能()A与北岸相连B与南岸相连C由于侵蚀而消失D以上都不对我 2020-06-19 …
已知A(0,2),B(4,0).(1)如图1,连接AB,若D(0,-6),DE⊥AB于点E,B、C 2020-07-18 …
f(b)-2f(a+b/2)+f(a)=(b-a)^2/4f''(c)等式证明f(x)在[a,b] 2020-07-30 …
如图,在矩形ABCD中,经过点C作对角线DB的平行线,交AB的延长线于点E,试判断△ACE的形状并且 2020-11-01 …
气象资料表明:在连云港地区、当高度每增高100M时、气温就会降低约0.7°C、小明和气象资料表明:在 2020-11-06 …
1、下面哪个不属于中国文明的连续性的表现?(35.0分)A.文字的连续性B.佛教传入中国C.学术传统 2020-12-18 …