早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在正方形ABCD中,点P从C出发,沿射线CB运动,连接AP,过点P作EP⊥AP,分别交直线CD、AB于点E、F,证明BP=EC+BF初二上学期以上的方法不要用谢谢

题目详情
在正方形ABCD中,点P从C出发,沿射线CB运动,连接AP,过点P作EP⊥AP,分别交直线CD、AB于点E、F,证明BP=EC+BF
初二上学期以上的方法不要用谢谢
▼优质解答
答案和解析
求证BP=EC+BF
证明:
∵ABCD为正方形
∴PC+PB=BC=AB
∵AP⊥EF,CB⊥AB
∵在直角三角形PCE和直角三角形PBF中,∠BPF=∠CPE
∴△PFB∽△PEC
∴PB/PC=BF/CE(相似三角形)
∴PC*BF=PB*CE(等式变形)
∵PA⊥EF,PB⊥AB
∴在直角三角形PAF中,PB是斜边AF上的高
∴PB^2=AB*BF=BC*BF=(PB+PC)*BF=PB*BF+PC*BF=PB*BF+PB*CE(由上式推导)=PB*(BF+CE)
∴BP=EC+BF(等式两边同除PB)