如图,在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1中点(1)求证:AE⊥BF;(2)求证:AB1⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP,若存在,确定点P位置;若不存在,说明理由.
如图,在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1中点
(1)求证:AE⊥BF;
(2)求证:AB1⊥BF;
(3)棱CC1上是否存在点P,使BF⊥平面AEP,若存在,确定点P位置;若不存在,说明理由.
1、取AD中点M,连结FM、BM,交AE于N,
在底面ABCD中,RT△ABM和RT△ADE,
∵AD=AB,
〈BAM=〈ADE=90°,
AM=DE=AB/2,
∴RT△ABM≌RT△DAE,
∴〈DAE=〈ABM,
∵〈MAN+〈BAN=90°,
〈ABN+〈BAN=90°,
∴〈ANB=90°,
∴AE⊥BM,
∵FM//AA1,
AA1⊥平面ABCD,
∴FM⊥平面ABCD,
∵AE∈平面ABCD,
∴FM⊥AE,
∵FM∩BM=M,
∴AE⊥平面FBM,
∵BF∈平面BMF,
∴AE⊥BF.
2、连结A1B,
∵四边形ABB1A1是正方形,
∴A1B⊥AB1,
∵A1F⊥平面ABB1A1,
AB1∈平面ABB1A1,
∴A1F⊥AB1,
∵A1F∩A1B=A1,
∴AB1⊥平面A1BF,
∵BF∈平面A1BF,
∴AB1⊥BF,
3、取CC1中点P,连结C1D,
∵EP是△CDC1的中位线,
∴EP//C1D,
∵B1C1//=AD,
∴四边形B1C1DA是平行四边形,
∴C1D//AB1,
∴PE//AB1,
由1、2所述AE⊥BF,AB1⊥BF,
∴PE⊥BF,
∵AE∩PE=E,
∴BF⊥平面AEP.
a,b,c是直角三角形的三条边,c是斜边.以1\a,1\b,1\c的长为边的三条线段能否组成直角三 2020-05-14 …
判定7/332和1949/1992能否表示为1/l+1/m的形式,其中l,m为正整数.若能表示,求 2020-06-12 …
三角形ABC的三边为a,b,c,a>b>c,1/a+1/b+1/c=1,判断这样的三角形是否存在能 2020-06-12 …
推理否证问题用A推出B,再用B推出C,但能用C否证A吗?(如果C有足够的条件去否证A)还是这个命题 2020-07-09 …
排列组合最基本公式证明证明c上标3下标5为5x4x3/3x2x1证明这个公式是怎么来的另外c上标k 2020-07-29 …
方程组的证明方程组ax1^2+bx1+c=x2ax2^2+bx2+c=x3.ax(n-1)^2+b 2020-08-01 …
一道简单的高数题.设函数f(x)在区间〔0,1〕上连续,在(0,1)内可导,f(0)=f(1)=0 2020-08-02 …
如图,在平面直角坐标系中,B(0,1),C(0,-1),D为x轴正半轴上一点,A为第一象限内一动, 2020-08-03 …
下列不属于记账凭证审核内容的是()。A.凭证是否符合有关的计划和预算B.会计科目使用是否正确C.凭证 2020-11-21 …
下列各项中,属于记账凭证审核内容的有()多选题A.所附原始凭证的内容与记账凭证的内容是否一致B.使用 2020-12-05 …