早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,抛物线y=x2+bx+c的顶点为D(-1,-4),与y轴交于点C(0,-3),与x轴交于A,B两点(点A在点B的左侧). (1)求抛物线的解析式; (2)连接AC,CD,AD,试证明△ACD为直角三角形; (3)若点E在抛物线

题目详情
如图,抛物线y=x2+bx+c的顶点为D(-1,-4),与y轴交于点C(0,-3),与x轴交于A,B两点(点A在点B的左侧). (1)求抛物线的解析式; (2)连接AC,CD,AD,试证明△ACD为直角三角形; (3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)由题意得 ,-b/2=-1,4c-b²/4=-4 b=2,c=﹣3, 则解析式为:y=x²+2x﹣3;
(2)∵y=x²+2x﹣3, ∴x=1或x=﹣3, 由题意点A(﹣3,0), ∴AC= √9+9=3√2,CD=√1+1=√2 ,AD= √4+16=2√5, 由AC²+CD²=AD², 所以△ACD为直角三角形;
3,若AB为一边,则EF平行且等于AB等于4,则E、F的纵坐标相等,设F(X1,Y1),则X1=-5 Y1=12或X1=3 Y1=12,
若AB为对角线,则EF也为对角线,因E在对称轴上,根据平行四边形的性质,对角线平分,所以只有顶点D符合.
因此F点为(-5,12)或(3,12)或(-1,-4)