早教吧作业答案频道 -->数学-->
求∫(y^2+z^2)dx+(x^2+y^2)dy+(x^2+y^2)dz沿C的线积分求∫(y^2+z^2)dx+(x^2+z^2)dy+(x^2+y^2)dz沿C的线积分C是半球x^2+y^2+z^2=2ax,z>0和圆柱x^2+y^2=2bx,0
题目详情
求∫(y^2+z^2)dx+(x^2+y^2)dy+(x^2+y^2)dz沿C的线积分
求∫(y^2+z^2)dx+(x^2+z^2)dy+(x^2+y^2)dz沿C的线积分
C是半球x^2+y^2+z^2=2ax,z>0和圆柱x^2+y^2=2bx,0
求∫(y^2+z^2)dx+(x^2+z^2)dy+(x^2+y^2)dz沿C的线积分
C是半球x^2+y^2+z^2=2ax,z>0和圆柱x^2+y^2=2bx,0
▼优质解答
答案和解析
如图,红色曲线为积分曲线.
将x=2b,y=0代入半球方程可得z=2[b(b-a)]^(1/2),
于是可得交线最高点为(2b,0,2[b(b-a)]^(1/2)).
下面开始积分:
曲线积分∫c(y^2+z^2)dx+(x^2+y^2)dy+(x^2+y^2)dz=∫c(y^2+z^2)dx+∫c (x^2+y^2)dy+∫c (x^2+y^2)dz
其中第一个积分∫c(y^2+z^2)dx=
第二个积分∫c(x^2+y^2)dy=
第三个积分∫c(x^2+y^2)dz=∫c2bxdz(因为x^2+y^2=2bx)
综上所述,∫(y^2+z^2)dx+(x^2+z^2)dy+(x^2+y^2)dz沿C的线积分为8ab^2.
如图,红色曲线为积分曲线.
将x=2b,y=0代入半球方程可得z=2[b(b-a)]^(1/2),
于是可得交线最高点为(2b,0,2[b(b-a)]^(1/2)).
下面开始积分:
曲线积分∫c(y^2+z^2)dx+(x^2+y^2)dy+(x^2+y^2)dz=∫c(y^2+z^2)dx+∫c (x^2+y^2)dy+∫c (x^2+y^2)dz
其中第一个积分∫c(y^2+z^2)dx=
第二个积分∫c(x^2+y^2)dy=
第三个积分∫c(x^2+y^2)dz=∫c2bxdz(因为x^2+y^2=2bx)
综上所述,∫(y^2+z^2)dx+(x^2+z^2)dy+(x^2+y^2)dz沿C的线积分为8ab^2.
看了 求∫(y^2+z^2)dx+...的网友还看了以下:
请帮我算下这个数独的答案,{4,2,0,0,9,0,0,0,0}{5,0,7,3,0,0,0,0, 2020-04-26 …
求∫(y^2+z^2)dx+(x^2+y^2)dy+(x^2+y^2)dz沿C的线积分求∫(y^2 2020-05-16 …
求1+2+2^2+2^3+2^4+…+2^2014的值.设S=1+2+2^2+2^3+2^4+…+ 2020-07-09 …
直接写得数.1.2+0.5=8.9-2.7=1-0.9=25×4=2400÷4=78-39=3+0 2020-07-09 …
求过点(2,4),且在两坐标轴上的截距之和为0的直线的方程答案是x-y+2=0或2x-y=0可是我 2020-07-30 …
线性代数题:利用矩阵的初等行变换求矩阵A=(-1,0,0;0,1,2;0,2,3)的逆矩阵A的-1 2020-08-02 …
xyz=1,x+y+z=2,x^2+y^2+z^2=3,求x,y,z我解:xy=1/z,x+y=2- 2020-10-31 …
观察下列各式然后回答问题:1-1/2^2=1/2*2/3,1-1/3^2+2/3*4/3,1-1/4 2020-11-01 …
已知a,b属于正实数a^2+b^2/2=1求y=a√(1+b^2)的最大值参考书上是用y^2=[a√ 2020-12-31 …
这些题怎么数学解1已知(x+m)^2(x^2-2x+3)+x(x+1)中不含x^2项求m的值2已知a 2020-12-31 …