早教吧作业答案频道 -->数学-->
如图,在梯形ABCD中,AD‖BC,对角线AC,BD相交于O,过O作EF‖BC交AB于E,DC于F (1)求证OE=OF(2)AB分之1+CD分之1=EF分之2
题目详情
如图,在梯形ABCD中,AD‖BC,对角线AC,BD相交于O,过O作EF‖BC交AB于E,DC于F (1)求证OE=OF
(2)AB分之1+CD分之1=EF分之2
(2)AB分之1+CD分之1=EF分之2
▼优质解答
答案和解析
1、∵AD∥BC
∴∠ADO=∠CBO,∠DAO=∠BCO
∴△AOD∽△BOC
∴OD/OB=AO/OC
即OD/BD=AO/AC
∵EF∥BC
∴△AOE∽△ABC,△DOF∽△DBC
∴OE/BC=AO/AC,OD/BD=OF/BC
∴OE/BC=OF/BC
∴OE=OF
2、∵EF∥AD,EF∥BC
∴OE/AD=OB/BD OE/BC=OD/BD
两个式子相加,可以得到OE/AD+OE/BC=1
再把OE除过去,就可以得到1/AD+1/BC=1/OE
因为OE=OF ,所以EF=2OE
所以有1/AD+1/BC=2/EF
∴∠ADO=∠CBO,∠DAO=∠BCO
∴△AOD∽△BOC
∴OD/OB=AO/OC
即OD/BD=AO/AC
∵EF∥BC
∴△AOE∽△ABC,△DOF∽△DBC
∴OE/BC=AO/AC,OD/BD=OF/BC
∴OE/BC=OF/BC
∴OE=OF
2、∵EF∥AD,EF∥BC
∴OE/AD=OB/BD OE/BC=OD/BD
两个式子相加,可以得到OE/AD+OE/BC=1
再把OE除过去,就可以得到1/AD+1/BC=1/OE
因为OE=OF ,所以EF=2OE
所以有1/AD+1/BC=2/EF
看了 如图,在梯形ABCD中,AD...的网友还看了以下:
(2010•广安)如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙ 2020-05-13 …
不正确的VLAN划分方式是(9)。 A.基于交换机端口划分 B.基于网卡地址划分C.基于IP地址划分 2020-05-26 …
频发早捕是指()A.大于3次/分B.3-5次/分C.大于5次/分D.大于10次/分 2020-06-07 …
如图1,△ABC内接于⊙O,AD平分∠BAC,交直线BC于点E,交⊙O于点D.(1)过点D作MN∥ 2020-06-27 …
三角形ABC内接于圆O AD平分角BAC 交直线BC于点E 交圆o点D 求证AB乘AC=AD乘AE 2020-06-27 …
(2008•天门)如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作E 2020-07-20 …
圆O与圆O'相交与A,B两点,过点B作CD垂直于AB,分别交圆O与圆O'于点C.D.(1)求证:A 2020-07-31 …
如图:⊙O和⊙O'内切于P半径OA和OB切⊙O'于C、D连O'C和O'D如果两圆半径分别为9和3则 2020-07-31 …
如图,过圆O外一点A分别作圆O的两条切线AB、AC,延长BA于点D,使DA=AB,直线CD交圆O于 2020-08-01 …
直线PE,PF相交于点P,交圆O于A.B.C.D.(一)若点P在圆O外,且直线PE,PF相交于点P 2020-08-03 …