早教吧作业答案频道 -->数学-->
已知数列{an}(n≥0)满足a0=0,a1=1,对于所有正整数n,有an+1=2an+2007an-1,求已知数列{an}(n≥0)满足a0=0,a1=1,对于所有正整数n,有an+1=2an+2007an-1,求使得2008整除an成立的最小正整数n.an+1=2an+2007an-1中是a(n
题目详情
已知数列{an}(n≥0)满足a0=0,a1=1,对于所有正整数n,有an+1=2an+2007an-1,求
已知数列{an}(n≥0)满足a0=0,a1=1,对于所有正整数n,有an+1=2an+2007an-1,求使得2008整除an成立的最小正整数n.
an+1=2an+2007an-1中是a(n+1) 和a(n-1)
已知数列{an}(n≥0)满足a0=0,a1=1,对于所有正整数n,有an+1=2an+2007an-1,求使得2008整除an成立的最小正整数n.
an+1=2an+2007an-1中是a(n+1) 和a(n-1)
▼优质解答
答案和解析
a(n+1)=2an+2007a(n-1)
an=2a(n-1)+2007a(n-2)
...
a2=2a1+a0
相加可得a(n+1)+an+a(n-1)+...+a2=2an+2009[a(n-1)+a(n-2)+...+a1]+2007a0=2an+2009[a(n-1)+a(n-2)+...+a1]
整理得a(n+1)-an=1+2008S(n-1)
∴[a(n+1)-an] mod 2008 = 1
∵a0=0
∴an=an-a0=an-a(n-1)+a(n-1)-a(n-2)+...+a2-a1+a1-a0=n+2008(n-1)+2008(n-2)+...
∴an mod 2008 = n
∴使得2008整除an成立的最小正整数n=2008
同学检查下有错误否?有问题追问..
an=2a(n-1)+2007a(n-2)
...
a2=2a1+a0
相加可得a(n+1)+an+a(n-1)+...+a2=2an+2009[a(n-1)+a(n-2)+...+a1]+2007a0=2an+2009[a(n-1)+a(n-2)+...+a1]
整理得a(n+1)-an=1+2008S(n-1)
∴[a(n+1)-an] mod 2008 = 1
∵a0=0
∴an=an-a0=an-a(n-1)+a(n-1)-a(n-2)+...+a2-a1+a1-a0=n+2008(n-1)+2008(n-2)+...
∴an mod 2008 = n
∴使得2008整除an成立的最小正整数n=2008
同学检查下有错误否?有问题追问..
看了 已知数列{an}(n≥0)满...的网友还看了以下:
正整数n(n>1)的三次方分解为m个连续奇数之和,n是质数的时候只有一种吗?正整数n,n是质数的时 2020-04-10 …
已知数列{an}(n≥0)满足a0=0,a1=1,对于所有正整数n,有an+1=2an+2007a 2020-05-17 …
请教一道有关自然数的题目对任意正整数n,用S(n)表示满足不定方程1/x+1/y=1/n的正整数对 2020-06-08 …
1.下列算法中,所指满足条件的n是指n为_S1输入nS2判断n是否为2;若n=2,则n满足条件,结 2020-07-04 …
求所有正实数n使得存在整数k和有理数a1,a2...ak满足a1+a2+...+ak=a1*a2* 2020-07-09 …
一道数列题已知an=n在集合M={m|m=2k,k属于Z,且1000≤k≤1500}中,是否存在正 2020-07-26 …
关于不定方程的几道题目~1.满足方程x^2+y^2=z^3的正整数组(x,y,z)有多少组?2.求 2020-08-02 …
一元一次不等式求满足下列条件的最小正整数n,对于这个n,有唯一的正整数k,满足8/15<n/n+k 2020-08-03 …
一数论题求助证明:没有正整数n能满足φ(n)=26.补充:φ(n)是欧拉函数:欧拉函数是数论中很重要 2020-11-06 …
已知[x]为不超过x的最大整数1、求证:没有正整数c,使得任意正整数n,都有[根号n]=[根号(n+ 2020-11-19 …