早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知An5=56Cn7,且(1-2x)n=a0+a1x+a2x2+a3x3+…+anxn.(Ⅰ)求n的值;(Ⅱ)求a1+2a2+3a3+…+nan的值.(Ⅲ)求S=Cn0+3Cn1+5Cn2+…+(2n-1)Cnn-1+(2n+1)Cnn的值.

题目详情
已知An5=56Cn7,且(1-2x)n=a0+a1x+a2x2+a3x3+…+anxn
(Ⅰ)求n的值;
(Ⅱ)求a1+2a2+3a3+…+nan的值.
(Ⅲ) 求S=Cn0+3Cn1+5Cn2+…+(2n-1)Cnn-1+(2n+1)Cnn的值.
▼优质解答
答案和解析
(Ⅰ)由A5n=56C7n得:n(n-1)(n-2)(n-3)(n-4)=56•n(n−1)(n−2)(n−3)(n−4)(n−5)(n−6)7•6•5•4•3•2•1,即(n-5)(n-6)=90,解之得:n=15或n=-4(舍去),故n=15.(Ⅱ)当n=15时,由已知有:(1...