早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数y=f(x)的图像关于点(-1,0)对称且当x∈(0,+∞)时,f(x)=1/x则当x∈(-∞,-2)时f(x)的解析式为?

题目详情
已知函数y=f(x)的图像关于点(-1,0)对称
且当x∈(0,+∞)时,f(x)=1/x 则当x∈(-∞,-2)时f(x)的解析式为?
▼优质解答
答案和解析
一般的步骤是先设f(x)上的任一点(x,y),它关于点(-1,0)对称的点的坐标为(x0,y0);
利用中点坐标公式求出它们的关系如下:
(x+x0)/2=-1 ;(y+y0)/2=0
所以x0=-2-x,y0=-y
接下来把-2-x代掉x,-y代掉y,得:-y=1/(-2-x)
得到f(x)=1/(x+2)
所以:f(x)的解析式为f(x)=1/(x+2)