早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列中,,,(1)是否存在常数λ,μ,使得数列是等比数列,若存在,求λ,μ的值,若不存在,说明理由;(2)设,数列的前n项和为,是否存在常数c,使得成立?并证明你的结论;(3)设,

题目详情
已知数列中,
(1)是否存在常数λ,μ,使得数列是等比数列,若存在,求λ,μ的值,若不存在,说明理由;
(2)设,数列的前n项和为,是否存在常数c,使得成立?并证明你的结论;
(3)设,证明.____
▼优质解答
答案和解析
【分析】(1)由题意知an+1=2an-n2+3n可化为an+1+λ(n+1)2+μ(n+1)=2(an+λn2+μn),故,所以存在,使得数列{an+λn2+μn}是等比数列.
(2)由题意得bn=2n-1,要使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立,则有c=-1,所以,存在常数c=-1,使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立.
(3)由题意知,所以,由此可证明Tn(n≥2).
(1)设an+1=2an-n2+3n可化为an+1+λ(n+1)2+μ(n+1)=2(an+λn2+μn),
即an+1=2an+λn2+(μ-2λ)n-λ-μ,
,得
又a1-12+1≠0,
所以存在,使得数列{an+λn2+μn}是等比数列;
(2)由(1)得an-n2+n=(a1-12+1)•2n-1
得an=2n-1+n2-n,所以bn=2n-1,Sn=2n-1,
要使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立,
则有${((S_(n)-c)(S_(n+2)-c)=(S_(n+1)-c)^(2)),(S_(n)-c>0):},得c=-1,
所以,存在常数c=-1,使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立;
(3)证明:因为an=2n-1+n2-n,
所以
而$c_{n}=\\frac{1}{n^2}lt\\frac{1}{n^{2}-\\frac{1}{4}}=\\frac{1}{n-\\frac{1}{2}}-\\frac{1}{n+\\frac{1}{2}}
所以T_{n}=c_{1}+c_{2}+…+c_{n}lt1+\\frac{2}{3}-\\frac{1}{n+\\frac{1}{2}}lt\\frac{5}{3}(n≥2)
又当n=2时,T_{2}=\\frac{5}{4}>\\frac{4}{5}
当n≥3时,c_{n}=\\frac{1}{n^2}>\\frac{1}{n}-\\frac{1}{n+1}
T_{n}=c_{1}+c_{2}+…+c_{n}>1-\\frac{1}{n+1}=\\frac{n}{n+1}>\\frac{n}{n+1}•\\frac{6}{2n+1}=\\frac{6n}{(n+1)(2n+1)}$;
综上,Tn(n≥2)得证.
【点评】本题考查数列的综合运用,解题时要认真审题,仔细解答.
看了 已知数列中,,,(1)是否存...的网友还看了以下:

独轮车前进时阻力和动力分别是什么可以这么说嘛,动力是向前的静摩擦力,阻力是向后的滚动摩擦力(实质也  2020-04-13 …

滑动摩擦和滚动摩擦一样吗?足球在向前运动时,所受到的摩擦力是向前的吗?我把足球看成几个面.它在向前  2020-05-02 …

阅读下面的材料,根据要求作文。最近,著名音乐人高晓松的一句“生活不只是眼前的苟且,还有诗和远方”成  2020-05-13 …

魂锁典狱长锤石基础生命值降低至500,以前是541基础护甲值降低至12,以前是18地狱诅咒-灵魂现  2020-05-13 …

计算车轮滚动一周的距离,实际上是求圆的.如果一辆卡车车轮的直径是0.8米,车轮向前滚动100周,这  2020-05-13 …

知道概率密度如何求分布函数我自己看书自己理解了点 .也不知道有没误区我想分布函数求概率密度时 就是  2020-05-15 …

现价678元,是以前的130%这个怎么算求计算公式!只知道目前的数量具体数值是以前的130%,求个  2020-05-16 …

求一些讽刺科举制度的文章 孔乙己 范进中举除外求一些讽刺科举制度的文章 最好就是以前的名人写的 现  2020-05-17 …

高一物理 自由落体做自由落体运动的物理落地时速度为Vt,则其下落一半高度所需时间为多少?下落后一半  2020-05-17 …

一个三位数,个位是十位的2倍,十位的比百位的少7.如果把百位数与个位数调换得到的数是之前的二分之一  2020-06-03 …