早教吧作业答案频道 -->政治-->
已知数列中,,,(1)是否存在常数λ,μ,使得数列是等比数列,若存在,求λ,μ的值,若不存在,说明理由;(2)设,数列的前n项和为,是否存在常数c,使得成立?并证明你的结论;(3)设,
题目详情
已知数列中,,,
(1)是否存在常数λ,μ,使得数列是等比数列,若存在,求λ,μ的值,若不存在,说明理由;
(2)设,数列的前n项和为,是否存在常数c,使得成立?并证明你的结论;
(3)设,,证明.____
(1)是否存在常数λ,μ,使得数列是等比数列,若存在,求λ,μ的值,若不存在,说明理由;
(2)设,数列的前n项和为,是否存在常数c,使得成立?并证明你的结论;
(3)设,,证明.____
▼优质解答
答案和解析
【分析】(1)由题意知an+1=2an-n2+3n可化为an+1+λ(n+1)2+μ(n+1)=2(an+λn2+μn),故,所以存在,使得数列{an+λn2+μn}是等比数列.
(2)由题意得bn=2n-1,要使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立,则有c=-1,所以,存在常数c=-1,使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立.
(3)由题意知,,所以…,由此可证明Tn(n≥2).
(2)由题意得bn=2n-1,要使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立,则有c=-1,所以,存在常数c=-1,使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立.
(3)由题意知,,所以…,由此可证明Tn(n≥2).
(1)设an+1=2an-n2+3n可化为an+1+λ(n+1)2+μ(n+1)=2(an+λn2+μn),
即an+1=2an+λn2+(μ-2λ)n-λ-μ,
故,得,
又a1-12+1≠0,
所以存在,使得数列{an+λn2+μn}是等比数列;
(2)由(1)得an-n2+n=(a1-12+1)•2n-1,
得an=2n-1+n2-n,所以bn=2n-1,Sn=2n-1,
要使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立,
则有${((S_(n)-c)(S_(n+2)-c)=(S_(n+1)-c)^(2)),(S_(n)-c>0):},得c=-1,
所以,存在常数c=-1,使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立;
(3)证明:因为an=2n-1+n2-n,
所以,
而$c_{n}=\\frac{1}{n^2}lt\\frac{1}{n^{2}-\\frac{1}{4}}=\\frac{1}{n-\\frac{1}{2}}-\\frac{1}{n+\\frac{1}{2}}
所以T_{n}=c_{1}+c_{2}+…+c_{n}lt1+\\frac{2}{3}-\\frac{1}{n+\\frac{1}{2}}lt\\frac{5}{3}(n≥2)
又当n=2时,T_{2}=\\frac{5}{4}>\\frac{4}{5}
当n≥3时,c_{n}=\\frac{1}{n^2}>\\frac{1}{n}-\\frac{1}{n+1}
得T_{n}=c_{1}+c_{2}+…+c_{n}>1-\\frac{1}{n+1}=\\frac{n}{n+1}>\\frac{n}{n+1}•\\frac{6}{2n+1}=\\frac{6n}{(n+1)(2n+1)}$;
综上,Tn(n≥2)得证.
即an+1=2an+λn2+(μ-2λ)n-λ-μ,
故,得,
又a1-12+1≠0,
所以存在,使得数列{an+λn2+μn}是等比数列;
(2)由(1)得an-n2+n=(a1-12+1)•2n-1,
得an=2n-1+n2-n,所以bn=2n-1,Sn=2n-1,
要使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立,
则有${((S_(n)-c)(S_(n+2)-c)=(S_(n+1)-c)^(2)),(S_(n)-c>0):},得c=-1,
所以,存在常数c=-1,使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立;
(3)证明:因为an=2n-1+n2-n,
所以,
而$c_{n}=\\frac{1}{n^2}lt\\frac{1}{n^{2}-\\frac{1}{4}}=\\frac{1}{n-\\frac{1}{2}}-\\frac{1}{n+\\frac{1}{2}}
所以T_{n}=c_{1}+c_{2}+…+c_{n}lt1+\\frac{2}{3}-\\frac{1}{n+\\frac{1}{2}}lt\\frac{5}{3}(n≥2)
又当n=2时,T_{2}=\\frac{5}{4}>\\frac{4}{5}
当n≥3时,c_{n}=\\frac{1}{n^2}>\\frac{1}{n}-\\frac{1}{n+1}
得T_{n}=c_{1}+c_{2}+…+c_{n}>1-\\frac{1}{n+1}=\\frac{n}{n+1}>\\frac{n}{n+1}•\\frac{6}{2n+1}=\\frac{6n}{(n+1)(2n+1)}$;
综上,Tn(n≥2)得证.
【点评】本题考查数列的综合运用,解题时要认真审题,仔细解答.
看了 已知数列中,,,(1)是否存...的网友还看了以下:
设为数列的前n项和,对任意的,都有(m为常数,且m>0).(1)求证:数列是等比数列.(2)设数列 2020-05-13 …
公差不为零 的等差数列的2,4,7,项成等比数列其公比是? 2020-05-13 …
数字找规律-12-34-56-7,.14916253649.03815243548.1.第一行的数 2020-05-14 …
已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1. (1)设bn=an+ 2020-05-15 …
a1=1,an+1=2an+2^n 设bn=an/2^n-1 1证明bn是等差数列 2求an前n项 2020-05-15 …
甲乙两列火车在并列的2个轨道上匀速行驶,甲车长300m速度20m/s,乙车长250m速度30m/s 2020-05-16 …
(1)设某数为x,它的1/3与2的差比该数的2倍大5,则所列方程为 (2)若2xm+2次方+1=6 2020-05-16 …
在数列{an}中,a1=1,an+1=2an+2^n.①设bn=an/2^(n+1),证明:数列{ 2020-05-17 …
从下列的2道试题(试题五和试题六)中任选 1道解答。如果解答的试题数超过1道,则题号小的 1 道解答 2020-05-26 …
设X的2次方+X-1=0,求X的3次方-2X+7 2020-06-04 …