早教吧作业答案频道 -->数学-->
已知数列{an}:an=8/((n+1)(n+3)),求(n+1)(an-an+1)和的值.
题目详情
已知数列{an}:an=8/((n+1)(n+3)),求(n+1)(an-an+1)和的值.
▼优质解答
答案和解析
an=8/((n+1)(n+3))=4(1/(n+1)-1/(n+3))
令bn=(n+1)(an-an+1)
bn=(n+1)(an-an+1)
=4(n+1)[(1/(n+1)-1/(n+3))-(1/(n+2)-1/(n+4))]
=4(n+1)[1/(n+1)-1/(n+2)-1/(n+3)+1/(n+4)]
=4[1-(1-1/(n+2))-(1-2/(n+3))+(1-3/(n+4))]
=4[1/(n+2)+2/(n+3)-3/(n+4)]
那么bn前n项和:
Tn=4[(1/3+2/4-3/5)+(1/4+2/5-3/6)+(1/5+2/6-3/7)+...+1/(n+2)+2/(n+3)-3/(n+4)]
=4[1/3+2/4+1/4-1/(n+3)-3/(n+4)]
=13/3-4/(n+3)-12/(n+4)
令bn=(n+1)(an-an+1)
bn=(n+1)(an-an+1)
=4(n+1)[(1/(n+1)-1/(n+3))-(1/(n+2)-1/(n+4))]
=4(n+1)[1/(n+1)-1/(n+2)-1/(n+3)+1/(n+4)]
=4[1-(1-1/(n+2))-(1-2/(n+3))+(1-3/(n+4))]
=4[1/(n+2)+2/(n+3)-3/(n+4)]
那么bn前n项和:
Tn=4[(1/3+2/4-3/5)+(1/4+2/5-3/6)+(1/5+2/6-3/7)+...+1/(n+2)+2/(n+3)-3/(n+4)]
=4[1/3+2/4+1/4-1/(n+3)-3/(n+4)]
=13/3-4/(n+3)-12/(n+4)
看了 已知数列{an}:an=8/...的网友还看了以下:
数列!快来,已知数列{An}中,A1=-1,An+1*An=An+1-An,则数列的通项=? 2020-04-07 …
已知数列an满足a1,a2-a1,a3-a2,…,an-a(n-1)是首项为1公比为1/3的等比数 2020-05-13 …
已知数列an满足a1=1╱4an=an-1(-1)n╱an-1-2设bn=1╱an2,求数列bn的 2020-05-17 …
已知数列{An}是等差数列.A1=2,且存在数列{Bn}是等比数列.使得4^(A1-1)*4^(A 2020-05-21 …
已知a1=1,an=n(a(n+1)-an),则数列{an}的通项公式an为————(1,n,n+ 2020-06-06 …
1.设Sn是数列an的前n项和且Sn=n+1/3^n-1(1/3^n指一除以3的n次方),bn=( 2020-07-15 …
已知数列{an}的前n项和为{Sn},且点(n,sn/n)在函数f(x)=2(an-1)/x+x- 2020-07-20 …
已知数列{an}中,a1=-1,an+1乘以an=an+1-an,则数列通项an= 2020-07-30 …
已知数列an满足递推公式:a(n+1)-2/an=an-2/a(n-1)(n>=2),a1=1,a 2020-08-01 …
是关于数列的,有没有会做的,都做了老半天了已知数列an满足a1=1,a2=-13,a(n-2)-2a 2020-11-25 …