早教吧作业答案频道 -->数学-->
设数列{an}中,a1=4,an=3an-1+2n-1(n≥2),求数列{an}的通项公式an.
题目详情
设数列{an}中,a1=4,an=3an-1+2n-1(n≥2),求数列{an}的通项公式an.
▼优质解答
答案和解析
∵an=3an-1+2n-1(n≥2),
∴an+1=3an+2n+1,
两式相减得an+1-an=3an-3an-1+2,
整理得:an+1-an+1=3(an-an-1+1),
又∵a1=4,a2=3a1+3=15,
∴a2-a1+1=15-4+1=12,
∴an+1-an+1
=3•(an-an-1+1)
=32•(an-1-an-2+1)
=…
=3n-1•(a2-a1+1)
=4•3n,
∴an+1=(an+1-an+1)+(an-an-1+1)+…+(a2-a1+1)+a1-n
=4(3n+3n-1+…+3)+4-n
=4•
+4-n
=2•3n+1-(n+1)-1,
∵a1=4、a2=15满足上式,
∴an=2•3n-n-1.
∴an+1=3an+2n+1,
两式相减得an+1-an=3an-3an-1+2,
整理得:an+1-an+1=3(an-an-1+1),
又∵a1=4,a2=3a1+3=15,
∴a2-a1+1=15-4+1=12,
∴an+1-an+1
=3•(an-an-1+1)
=32•(an-1-an-2+1)
=…
=3n-1•(a2-a1+1)
=4•3n,
∴an+1=(an+1-an+1)+(an-an-1+1)+…+(a2-a1+1)+a1-n
=4(3n+3n-1+…+3)+4-n
=4•
3(1-3n) |
1-3 |
=2•3n+1-(n+1)-1,
∵a1=4、a2=15满足上式,
∴an=2•3n-n-1.
看了 设数列{an}中,a1=4,...的网友还看了以下:
--RIGHT是什么意思?试了试以下三种情况:=IF(OR(--RIGHT(A1+1,1)=4,- 2020-05-16 …
等比数列an=a1*q^(n-1),Sn=a1(1-q^n)/(1-q)∴a3=2=a1*q^(3 2020-05-17 …
已知向量序列:a1,a2,a3,…,an,…满足如下条件:|a1|=4|d|=2,2a1•d=-1 2020-05-17 …
等比数列an=a1*q^(n-1),Sn=a1(1-q^n)/(1-q)∴a3=2=a1*q^(3 2020-06-17 …
已知A={a1,a2,a3,a4,a5},B={a1^2,a2^2,a3^2,a4^2,a5^2} 2020-07-30 …
完成反证法证题的全过程.设a1,a2,,a7是1,2,,7的一个排列,求证:乘积p=(a1-1)( 2020-08-01 …
如果执行如图所示的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则()A 2020-08-03 …
若(2x-1)^2013=a0+a1*x+a2*x^2+……+a2013*x^2013若(2x-1) 2020-10-31 …
定义函数f(x)=2|x+5|-|x+1|,数列a1,a2,a3…满足an+1=f(an),n∈N* 2020-10-31 …
证明:构造函数f(x)=(x-a1)^2+(x-a2)^2f(x)2x^2-2(a1+a2)x+a1 2020-12-31 …